PL EN
PRACA PRZEGLĄDOWA
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
W wyniku procesu starzenia dochodzi do zmian morfologicznych, anatomicznych oraz funkcjonalnych w obrębie mózgu. W konsekwencji może dojść do osłabienia pamięci selektywnej i koncentracji uwagi, a co za tym idzie pogorszenia jakości życia. Zmniejszona wydajność umysłowa zwiększa podatność mózgu na zaburzenia neurodegeneracyjne, takie jak choroba Alzheimera (ang. Alzheimer’s disease, AD), czy choroba Parkinsona (ang. Parkinson’s disease, PD). Jednym z głównych celów tej pracy była analiza danych dotyczących wpływu składu diety oraz zastosowania różnych strategii żywieniowych, takich jak ograniczenia wartości energetycznej diety (ang. calorie restriction, CR) i post przerywany (ang. intermittent fasting, IF), na zdrowie mózgu.

Metody przeglądu:
Wykorzystano strategię elektronicznego wyszukiwania obejmującą MeSH i słowa kluczowe.

Opis stanu wiedzy:
Na podstawie badań z ostatnich lat opracowano wiele strategii, których zastosowanie mogłoby w jakikolwiek sposób opóźnić proces starzenia się i rozwój towarzyszących mu zaburzeń oraz patologii związanych z wiekiem. W badaniach koncentrowano się głównie na interwencjach żywieniowych, które mogą opóźniać starzenie, szczególnie na zastosowaniu CR i IF. Istotną kwestią wydaje się także zmiana proporcji makroskładników pokarmowych i dzięki temu ich wpływu na długość życia i żywotność. Istnieją dowody, że modulacja proporcji makroskładników odżywczych może wpływać na starzenie się mózgu i funkcje poznawcze, a tym samym zapobiegać starzeniu się mózgu i zmniejszać ryzyko rozwoju chorób neurodegeneracyjnych.

Podsumowanie:
Istnieje potrzeba dalszych badań randomizowanych, uwzględniających różne czynniki, takie jak: podłoże genetyczne czy ciężkość choroby, dzięki którym możliwe będzie opracowanie odpowiednich strategii mających na celu zapobieganie zespołom otępiennym u osób starszych.


Introduction and objective:
It is widely known that the ageing process is associated with the occurrence of morphological, anatomical, and functional changes within the brain. Consequently, memory, elective attention and concentration may be impaired, and thus the quality of daily life may deteriorate. Reduced mental efficiency increases the susceptibility of the brain to neurodegenerative disorders, such as Alzheimer›s disease (AD) or Parkinson›s disease (PD). One of the main aims of this study was to examine the impact of diet composition and the use of various nutritional strategies, such as calorie restriction (CR) and intermittent fasting, (IF) on brain health.

Review methods:
An electronic search strategy was used, including MeSH and key words.

Brief description of the state of knowledge:
There are nutritional factors, including the amount of energy supplied and diet composition, which are important in brain functioning, especially during ageing. Based on research from recent years many strategies have been developed, the use of which could delay the neurological ageing process and the development of associated disorders and age-related pathologies. This research has focused mainly on nutritional interventions that delay (neurological) ageing, especially CR and IF. Particularly, altering the proportion of macronutrients appears to have an impact on life expectancy and longevity; a growing body of evidence shows that modulation of macronutrient proportions can affect brain ageing and cognition and, consequently, delay brain ageing and reduce the risk of developing neurodegenerative diseases, such as dementia.

Summary:
There is a need for further randomized studies taking into account various factors, such as: genetic background or the severity of the disease, due to which it will be possible to develop appropriate strategies to prevent dementia in the elderly.

Sokal A, Jarmakiewicz-Czaja S. Starzenie się mózgu i ryzyko wystąpienia zespołu otępiennego – czy odpowiednia dieta może temu zapobiec? Med Og Nauk Zdr. 2022; 28(1): 20–27. doi: 10.26444/monz/142467
REFERENCJE (85)
1.
Castellano C, Paquet N, Dionne I, et al. A 3-Month Aerobic Training Program Improves Brain Energy Metabolism in Mild Alzheimer's Disease: Preliminary Results from a Neuroimaging Study. J Alzheimers Dis. 2017; 56(4): 1459–1468. doi: 10.3233/JAD-161163.
 
2.
Jackson P, Pialoux V, Corbett D, et al. Promoting brain health through exercise and diet in older adults: a physiological perspective. J Physiol. 2016; 15; 594(16): 4485–98. doi: 10.1113/JP271270.
 
3.
Phillips C. Lifestyle Modulators of Neuroplasticity: How Physical Acti-vity, Mental Engagement, and Diet Promote Cognitive Health during Aging. Neural Plast. 2017; 3589271. doi: 10.1155/2017/3589271.
 
4.
Di Liegro C, Schiera G, Proia P, et al. Physical Activity and Brain Health. Genes (Basel). 2019; 10; 9. doi: 10.3390/genes10090720.
 
5.
Wahl D, Cogger V, Solon-Biet S, et al. Nutritional strategies to optimise cognitive function in the aging brain Ageing. Res Rev. 2016; 31: 80–92. doi: 10.1016/j.arr.2016.06.006.
 
6.
Chen X, Maguire D, Brodaty H, et al. Dietary Patterns and Cognitive Health in Older Adults: A Systematic Review. J Alzheimers Dis. 2019; 67(2): 583–619. doi: 10.3233/JAD-180468.
 
7.
Mattson M, Arumugam T. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018; 27(6): 1176–1199. doi: 10.1016/j.cmet.2018.05.011.
 
8.
Mattson M, Moehl K, Ghena N, et al. Intermittent Metabolic Switching, Neuroplasticity and Brain Health. Nat Rev Neurosci. 2018; 19(2): 63–80. doi: 10.1038/nrn.2017.156.
 
9.
Morrison CD, Hill CM, DuVall Mai, et al. Consuming a ketogenic diet leads to altered hypoglycemiccounter-regulation in mice. J Diabetes Complications. 2020; 34(5): 107557. doi: 10.1016/j.jdiacomp.2020.107557.
 
10.
Paol A, Bianco A, Damiani E, et al. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014: 474296. doi: 10.1155/2014/474296.
 
11.
Vargas-Molina S, Petro JL, Romance R, et al. Effects of a ketogenic diet on body composition and strength in trained women. J Int Soc Sports Nutr. 2020; 10; 17(1): 19. doi: 10.1186/s12970-020-00348-7.
 
12.
Rusek M, Pluta R, Ułamek-Kozioł M, et al. Ketogenic Diet in Alzheimer’s Disease. Int J Mol Sci. 2019; 9; 20(16): 3892. doi: 10.3390/ijms20163892.
 
13.
McDonald T, Cervenka MC. The Expanding Role of Ketogenic Diets in Adult Neurological Disorders. Brain Sci. 2018; 8(8): 148. doi: 10.3390/brainsci8080148.
 
14.
Rantalainen V, Lahti J, Henriksson M, et al. Cognitive ability in young adulthood predicts risk of early-onset dementia in Finnish men. Neurology. 2018; 10: 91(2): e171-e179. doi: 10.1212/WNL.0000000000005757.
 
15.
Paoli A, Bianco A, Damiani E, et al. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014: 474296. doi: 10.1155/2014/474296.
 
16.
Verdile G, Keane K, Cruzat V, et al. Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance Obesity and Alzheimer's Disease. Mediators Inflamm. 2015; 105828. doi:.1155/2015/105828.
 
17.
Batkulwar K, Godbole R, Banarjee R, et al. Advanced Glycation End Products Modulate Amyloidogenic APP Processing and Tau Phosphorylation: A Mechanistic Link between Glycation and the Development of Alzheimer’s Disease. ACS Chem Neurosci. 2018; 9(5): 988–1000. doi: 10.1021/acschemneuro.7b00410.
 
18.
Taylor M, Sullivan D, Swerdlow R, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017; 106(6): 1463–1470.
 
19.
Croteau E, Castellano C, Richard A, et al. Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer's Disease. J Alzheimers Dis. 2018; 64(2): 551–561. doi: 10.3233/JAD-180202.
 
20.
Vandenberghe C, Castellano C, Maltais M, et al. A Short-Term Intervention Combining Aerobic Exercise With Medium-Chain Triglycerides (MCT) Is More Ketogenic Than Either MCT or Aerobic Exercise Alone: A Comparison of Normoglycemic and Prediabetic Older Women. Appl Physiol Nutr Metab. 2019; 44(1): 66–73. doi: 10.1139/apnm-2018-0367.
 
21.
Vandenberghe C, St-Pierre V, Courchesne-Loyer A, et al. Caffeine Intake Increases Plasma Ketones: An Acute Metabolic Study in Humans. Can J Physiol Pharmacol. 2017; 95(4): 455–458. doi: 10.1139/cjpp-2016-0338.
 
22.
Klosinski L, Yao I, Yin F, et al. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease. EBioMedicine. 2015. doi: 10.1016/j.ebiom.2015.11.002.
 
23.
Fortier M, Castellano C, Croteau E, et al. A Ketogenic Drink Improves Brain Energy and Some Measures of Cognition in Mild Cognitive Impairment. Alzheimers Dement. 2019; 15(5): 625–634. doi: 10.1016/j.jalz.2018.12.01.
 
24.
Croteau E, Castellano CA, Fortier M, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Exp Gerontol. 2018; Jul 1; 107: 18–26. doi: 10.1016/j.exger.2017.07.004.
 
25.
Spencer S, D'Angelo H, Soch A, et al. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal- and amygdalar-dependent memory. Neurobiol Aging. 2017; 58: 88–101. doi: 10.1016/j.neurobiolaging.2017.06.014.
 
26.
Xu J, Gao H, Zhang L, et al. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet. J Pineal Res. 2019; 67; 2; e12584. doi.org/10.1111/jpi.12584.
 
27.
Crescenzo R, Spagnuolo M, Cancelliere R, et al. Effect of Initial Aging and High-Fat/High-Fructose Diet on Mitochondrial Bioenergetics and Oxidative Status in Rat Brain. Mol Neurobiol. 2019; 56(11): 7651–7663. doi.org/10.1007/s12035-019-1617-z.
 
28.
Healy-Stoffel M, Levant B. N-3 (Omega-3) Fatty Acids: Effects on Brain Dopamine Systems and Potential Role in the Etiology and Treatment of Neuropsychiatric Disorders. CNS Neurol Disord Drug Targets. 2018; 17(3): 216–232. doi:10.2174/1871527317666180412153612.
 
29.
Devassy J, Leng S, Gabbs M, et al. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. Adv Nutr. 2016; 7(5): 905–916. doi: 10.2174/1871527317666180412153612.
 
30.
López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol. 2016; 15; 594(8): 2043–60. doi: 10.1113/JP270543.
 
31.
Nicolovius M, Garcia R. Caloric Restriction and Memory During Aging. Rev Neurol. 2018; 66(12): 415–422.
 
32.
Shaffer J. Neuroplasticity and Clinical Practice: Building Brain Power for Health. Front Psychol. 2016; 26; 7: 1118. doi: 10.3389/fpsyg.2016.01118.
 
33.
Dauncey M. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients, 2013. 15; 5(3): 887–914. doi: 10.3390/nu5030887.
 
34.
Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017; 1; 36(11): 1474–1492. doi: 10.15252/embj.201695810.
 
35.
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014; 24; 7(1): 17–44. doi: 10.3390/nu7010017.
 
36.
Qadir M, Anwar S. Sirtuins in Brain Aging and Neurological Disorders. Crit Rev Eukaryot Gene Expr. 2017; 27(4): 321–329. doi: 10.1615/CritRevEukaryotGeneExpr.2017019532.
 
37.
Martin B, Mattson M, Maudsley S. Review Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev. 2006; 5(3): 332–53. doi: 10.1016/j.arr.2006.04.002.
 
38.
Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012; 16(6): 706–22. doi: 10.1016/j.cmet.2012.08.012.
 
39.
Lazarov O, Lee M, Peterson D, et al. Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci. 2002; 22(22): 9785–9793. doi.org/10.1523/JNEUROSCI.22-22-09785.
 
40.
Wu P, Shen Q, Dong S, et al. Calorie restriction ameliorates neurodege nerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging. 2008; Oct; 29(10): 1502–11. doi: 10.1016/j.neurobiolaging.2007.03.028.
 
41.
Stranahan A, Norman E, Lee K, et al. Diet-induced Insulin Resistance Impairs Hippocampal Synaptic Plasticity and Cognition in Middle-Aged Rats. Hippocampus. 2008; 18(11): 1085–8. doi: 10.1002/hipo.20470.
 
42.
Castrogiovanni P, Li Voltin G, Sanfilippo C, et al. Aging, Fasting and Fast Food Diet Play an Opposite Role in Mice Brain. Molecular Neurobiology. 2018; 55(8): 6881–6893. doi: 10.1007/s12035-018-0891-5.
 
43.
Pitsikas N, Algeri S. Deterioration of spatial and nonspatial reference and working memory in aged rats: protective effect of life-long calorie restriction. Neurobiol Aging. 1992; 13(3): 369–73. doi: 10.1016/0197-4580(92)90110-j.
 
44.
Adams M, Sh L, Linville M, et al. Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability. Exp Neurol. 2008; 211(1): 141–9. doi: 10.1016/j.expneurol.2008.01.016.
 
45.
Zhao W, Chen H, Quon M, et al. Insulin and the Insulin Receptor in Experimental Models of Learning and Memory. Eur J Pharmacol. 2004; 19; 490(1–3): 71–81. doi: 10.1016/j.ejphar.2004.02.045.
 
46.
Cauwenberghe CV, Vandendriessche C, Libert C, et al. Caloric restriction: beneficial effects on brain aging. Mamm Genome. 2016; 27(7–8): 300–19. doi: 10.1007/s00335-016-9647-6.
 
47.
Smith P, Blumenthal J, Babyak MA, et al. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension. 2010; 55(6): 1331–8. doi: 10.1161/HYPERTENSIONAHA.109.146795.
 
48.
Witte A, Fobker M, Gellner R, et al. Caloric Restriction Improves Memory in Elderly Humans. Proc Natl Acad Sci US. 2009; 27; 106(4): 1255–60. doi: 10.1073/pnas.0808587106.
 
49.
Flöel A, Witte A, Lohmann H, et al. Lifestyle and Memory in the Elderly. Neuroepidemiology. 2008; 31(1): 39–47. doi: 10.1159/000137378.
 
50.
Murphy T, Dias G, Thuret S. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap. Neural Plast. 2014; 563160. doi: 10.1155/2014/563160.
 
51.
Hwangbo DS, Lee HY, Abozaid LS, et al. Mechanisms of Lifespan Re-gulation by Calorie Restriction and Intermittent Fasting in Model Organisms. Nutrients. 2020; Apr 24; 12(4): 1194. doi: 10.3390/nu12041194.
 
52.
Baik SH, Rajeev V, Fann DY, et al. Intermittent fasting increases adult hippocampal neurogenesis. Brain Behav. 2020; Jan; 10(1): e01444. doi: 10.1002/brb3.1444.
 
53.
Heilbronn L, Smith S, Martin C, et al. Alternate-day Fasting in Nonobese Subjects: Effects on Body Weight, Body Composition, and Energy Metabolism. Am J Clin Nutr. 2005; 81(1): 69–73. doi: 10.1093/ajcn/81.1.69.
 
54.
Hussin N, Shahar S, Teng NF, et al. Efficacy of Fasting and Calorie Restriction (FCR) on Mood and Depression Among Ageing Men. J Nutr Health Aging. 2013; 17(8): 674–80. doi: 10.1007/s12603-013-0344-9.
 
55.
Bruce-Keller A, Umberger G, McFall R, et al. Food Restriction Reduces Brain Damage and Improves Behavioral Outcome Following Excitotoxic and Metabolic Insults. Ann Neurol. 1999.
 
56.
Anson R, Guo Z, Cabo R, et al. Intermittent Fasting Dissociates Benefi-cial Effects of Dietary Restriction on Glucose Metabolism and Neuronal Resistance to Injury From Calorie Intake. Proc Natl Acad Sci U S A. 2003; 100(10): 6216–20. doi: 10.1073/pnas.1035720100.
 
57.
Singh R, Lakhanpal D, Kumar S, et al. Late-onset intermittent fast ing dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr). 2012; Aug; 34(4): 917–33. doi: 10.1007/s11357-011-9289-2.
 
58.
Halagappa V, Guo Z, Pearson M, et al. Intermittent Fasting and Caloric Restriction Ameliorate Age-Related Behavioral Deficits in the Triple-Transgenic Mouse Model of Alzheimer's Disease. Neurobiol Dis. 2007; 26(1): 212–20. doi: 10.1016/j.nbd.2006.12.019.
 
59.
Nasaruddin ML, Syed Abd Halim SA, Kamaruzzaman MA. Studying the Relationship of Intermittent Fasting and β-Amyloid in Animal Model of Alzheimer's Disease: A Scoping Review. Nutrients. 2020; Oct 21; 12(10): 3215. doi: 10.3390/nu12103215.
 
60.
Chudzińska M, Wołowiec Ł, Zukow W, et al. Mediterranean diet recommended not only in cardiovascular diseases. Journal of Education, Health and Sport. 2017; 7(6): 732–746.
 
61.
Malikowska K, Grabańska-Martyńska K. Historia diety śródziemno morskiej w prewencji chorób układu krążenia. Medicorum Polonorum. 2016; 6,1; 41–49.
 
62.
Posta A. Exploring adherence and attitude towards the Mediterranean diet in a Spanish population. DHS. 2019; 2(3); 59–34.
 
63.
Morris M, Tangney C, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015; 11(9): 1015–1022. doi: 10.1016/j.jalz.2015.04.011.
 
64.
Berti V, Walters M, Sterling J, et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology. 2018; 90(20): e1789-e1798. doi: 10.1212/WNL.0000000000005527.
 
65.
McGrattan A, McGuinness B, McKinley M, et al. Diet and Inflammation in Cognitive Ageing and Alzheimer's Disease. Curr Nutr Rep. 2019; 8(2): 53–65. doi: 10.1007/s13668-019-0271-4.
 
66.
Radd-Vagenas S, Duffy S, Naismith S, et al. Effect of the Mediterranean diet on cognition and brain morphology and function: a systematic review of randomized controlled trials. Am J Clin Nutr. 2018; 107(3): 389–404. doi: 10.1093/ajcn/nqx070.
 
67.
Giudetti A, Salzet M, Cassano T. Oxidative Stress in Aging Brain: Nutritional and Pharmacological Interventions for Neurodegenerative Disorders. Oxid Med Cell Longev. 2018; doi.org/10.1155/2018/3416028.
 
68.
Román G, Jackson R, Gadhia R, et al. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris). 2019; 175(10): 724–741. doi: 10.1016/j.neurol.2019.08.005.
 
69.
Monacelli F, Acquarone E, Giannotti C, et al. Vitamin C, Aging and Alzheimer's Disease. Nutrients. 2017; 9(7): 670. 9(7): 670. doi: 10.3390/nu9070670.
 
70.
Castelli V, Grassi D, Bocale R, et al. Diet and Brain Health: Which Role for Polyphenols? Curr Pharm Des. 2018; 24(2): 227–238. doi: 10.2174/1381612824666171213100449.
 
71.
Weiser M, Butt C, Mohajeri M. Docosahexaenoic Acid and Cogni-tion throughout the Lifespan. Nutrients. 2016; 8(2): 99. doi: 10.3390/nu8020099
 
72.
Scarmeas N, Anastasiou C, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018; 17(11): 1006–1015. doi: 10.1016/S1474-4422(18)30338-7.
 
73.
Abate G, Marziano M, Rungratanawanich W, et al. Nutrition and AGE-ing: Focusing on Alzheimer's Disease. Oxid Med Cell Longev. 2017; 2017: 7039816. doi: 10.1155/2017/7039816.
 
74.
Layé S, Nadjar, Joffre C, et al. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev. 2018; 70(1): 12–38. doi: 10.1124/pr.117.014092.
 
75.
Matt S, Allen J, Lawson M, et al. Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated With Aging in Mice. Front Immunol. 2018; 9: 1832. doi.org/10.3389/fimmu.2018.01832.
 
76.
Wahl D, Solon-Biet S, Wang Q, et al. Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. Cell Rep. 2018; 25(8): 2234–2243. doi: 10.1016/j.celrep.2018.10.070.
 
77.
Roberts R, Roberts L, Geda Y, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis. 2012; 32(2): 329–339. doi: 10.3233/JAD-2012-120862.
 
78.
Pal S, Sen M, Poddar M. Dietary variation of protein-carbohydrate: effect on hypothalamic and hippocampal GABA-glutamate in relation to aging. Nutr Neurosci. 2006; 9(5–6): 241–249. doi: 10.1016/s0306-4522(00)00012-9.
 
79.
Moore K, Hughes C, Ward M, et al. Diet, nutrition and the ageing brain: current evidence and new directions. Proc Nutr Soc. 2018; 77(2): 152–163. doi: 10.1017/S0029665117004177.
 
80.
Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, et al. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev. 2017; 35: 222–240. https://doi.org/10.1016/j.arr.....
 
81.
Brandhorst S, Longo VD. Protein Quantity and Source, Fasting-Mi-micking Diets, and Longevity. Adv Nutr. 2019; Nov 1; 10(Suppl_4): S340-S350. doi: 10.1093/advances/nmz079.
 
82.
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017; Oct; 39: 46–58. doi: 10.1016/j.arr.2016.10.005.
 
83.
Cunnane SC, Courchesne-Loyer A, St-Pierre V, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Im-plications for the risk and treatment of Alzheimer's disease. Ann N Y. Acad Sci. 2016; 1367(1): 12–20. doi: 10.1111/nyas.12999.
 
84.
Bourassa MW, Alim I, Bultman SJ, et al. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett. 2016; Jun 20; 625: 56–63. doi: 10.1016/j.neulet.2016.02.009.
 
85.
Wahl, D, Coogan S, Solon-Biet S, et al. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging. 2017; 12: 1419–1428. doi: 10.2147/CIA.S145247.
 
eISSN:2084-4905
ISSN:2083-4543
Journals System - logo
Scroll to top