PL EN
PRACA PRZEGLĄDOWA
Occurrence and pathogenicity of Borrelia miyamotoi
 
Więcej
Ukryj
1
Zakład Biologicznych Szkodliwości Zdrowotnych i Parazytologii, Instytut Medycyny Wsi im. Witolda Chodźki w Lublinie, Polska
 
 
Autor do korespondencji
Anna Sawczyn-Domańska   

Zakład Biologicznych Szkodliwości Zdrowotnych i Parazytologii, Instytut Medycyny Wsi im. Witolda Chodźki w Lublinie, Jaczewskiego 2, 20-090, Lublin, Polska
 
 
Med Og Nauk Zdr. 2021;27(4):343-348
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
Bakterie Borrelia miyamotoi należą do grupy krętków wywołujących gorączki powrotne. Obec - nie są jedynymi znanymi bakteriami wywołującymi gorączki powrotne, transmitowanymi przez kleszcze twarde. Borrelia miyamotoi występuje powszechnie na terenie półkuli północnej i coraz częściej odnotowuje się występowanie infekcji powodowanych przez te bakterie. Celem pracy była analiza dostępnej literatury naukowej dotyczącej występowania krętków Borrelia miyamotoi w środowisku oraz przypadków infekcji powodowanych przez te krętki.

Metody przeglądu:
Przeglądu oraz analizy piśmiennictwa dokonano, przeszukując bazę danych PUBMED. W publikacji uwzględniono jedynie prace oryginalne. Z przeglądu wykluczono publikacje inne niż w języku angielskim, prace przeglądowe oraz metaanalizy.

Opis stanu wiedzy:
Głównym wektorem krętków Borrelia miyamotoi, podobnie jak w przypadku czynnika etiologicznego boreliozy z Lyme, są kleszcze z rodzaju Ixodes. Badania środowiskowe wskazują, że w krążeniu patogenów w przyrodzie znaczącą rolę odgrywają gryzonie. Pierwszy przypadek zakażenia człowieka opisano w 2011 roku w Rosji. Najczęstszymi objawami choroby są gorączka, osłabienie, ból głowy, ból mięśni i stawów, mdłości.

Podsumowanie:
W przeciwieństwie do boreliozy z Lyme, zakażenia powodowane przez krętki Borrelia miyamotoi są znacznie rzadziej diagnozowane. Liczba przypadków boreliozy Miyamotoi może być jednak niedoszacowana, gdyż dostęp zarówno do wystandaryzowanych testów serologicznych, jak i badań molekularnych jest znacznie utrudniony. Biorąc pod uwagę fakt, iż zasięg występowania Borrelia miyamotoi pokrywa się z obszarem występowania bakterii Borrelia burgdorferi, należy mieć na uwadze możliwość nabycia infekcji powodowanej przez krętki z grupy gorączek powrotnych na całym obszarze endemicznego występowania kleszczy z rodzaju Ixodes.


Introduction and objective:
Borrelia miyamotoi is a member of the relapsing fever group of Borrelia. Currently, Borrelia miyamotoi is the only relapsing fever spirochete that is transmitted by hard ticks. Borrelia miyamotoi is common in the northern hemisphere and infections caused by these spirochetes are becoming increasingly common. The study aimed to analyze the available scientific literature on the occurrence of Borrelia miyamotoi in the environment and cases of infections caused by these spirochetes.

Review methods:
The analysis of literature was performed by searching the PUBMED database. Original articles were selected for the review. Publications other than those in English, reviews and, meta-analyses were excluded from the review.

Abbreviated description of the state of knowledge:
The main vector of Borrelia miyamotoi are ticks of the genus Ixodes, which also transmit the etiologic agent of Lyme borreliosis. Environmental studies indicate that rodents play a significant role in the circulation of the pathogen in nature. The first case of human infection was described in 2011 in Russia. The most common symptoms of the disease are fever, weakness, headache, pain in muscles and joints, and nausea.

Summary:
In contrast to Lyme borreliosis, infections caused by Borrelia miyamotoi are much less frequently diagnosed. However, the number of cases of Borrelia miyamotoi disease may be underestimated, because an access to both standardized serologic tests and molecular assays is difficult. Taking into account that the range of distribution of Borrelia miyamotoi and Borrelia burgdorferi overlap, Borrelia miyamotoi infection should be considered in the entire area of endemic occurrence of Ixodes ticks.

Sawczyn-Domańska A. Występowanie i chorobotwórczość krętków Borrelia miyamotoi. Med Og Nauk Zdr. 2021; 27(4): 343–348. doi: 10.26444/monz/144719
 
REFERENCJE (82)
1.
National Center for Biotechnology Information (NCBI), NCBI Taxonomy, 2021 http://www.ncbi.nlm.nih.gov/Ta... (access: 2021.10.13).
 
2.
Wang G, Schwartz I. Genus Borrelia. In: Krieg NRS, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, et al., eds. Bergey’s Manual of Systematic Bacteriology, Vol. 4: The Bacteroidetes, Spiro - chaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. 2. Springer, New York; 2011. p. 484–531.
 
3.
Barbour AG, Bunikis J, Travinsky B, et al. Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg. 2009; 81(6): 1120–1131. https://doi.org/10.4269/ajtmh.....
 
4.
Telford SR, Goethert HK, Molloy PJ, et al. Borrelia miyamotoi disease: neither Lyme disease nor relapsing fever. Clin Lab Med. 2015; 35(4): 867–882. https://doi.org/10.1016/j.cll.....
 
5.
Adeolu M, Gupta RS. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie van Leeuwenhoek. 2014; 105(6): 1049–1072. https:// doi.org/10.1007/s10482-014-0164-x.
 
6.
Margos G, Gofton A, Wibberg D, et al. The genus Borrelia reloaded. PLoS One. 2018; 13(12): e0208432. https://doi.org/10.1371/journa.... pone.0208432.
 
7.
Stevenson B, Fingerle V, Wormser GP, et al. Public health and patient safety concerns merit retention of Lyme borreliosis-associated spirochetes within the genus Borrelia, and rejection of the genus novum Borreliella. Ticks Tick Borne Dis. 2019; 10(1): 1–4. https://doi.org/10.1016/j.ttbd....
 
8.
Margos G, Castillo-Ramirez S, Cutler S, et al. Rejection of the name Borreliella and all proposed species comb. nov. placed therein. Int J Syst Evol Microbiol. 2020; 70(5): 3577–3581. https://doi.org/10.1099/ ijsem.0.004149.
 
9.
Fukunaga M, Takahashi Y, Tsuruta Y, et al. Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int J Syst Bac- teriol. 1995; 45(4): 804–810. https://doi.org/10.1099/002077....
 
10.
Fraenkel CJ, Garpmo U, Berglund J. Determination of novel Borrelia genospecies in Swedish Ixodes ricinus ticks. J Clin Microbiol. 2002; 40(9): 3308–3312. https://doi.org/10.1128/JCM.40....
 
11.
Richter D, Schlee DB, Matuschka FR. Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis. 2003; 9(6): 697–701. https://doi.org/10.3201/eid090....
 
12.
Geller J, Nazarova L, Katargina O, et al. Detection and genetic characterization of relapsing fever spirochete Borrelia miyamotoi in Estonian ticks. PLoS One. 2012; 7(12): e51914. https://doi.org/10.1371/journa.... pone.0051914.
 
13.
Masuzawa T, Sakakibara K, Suzuki K, et al. Detection of Asian-type Borrelia miyamotoi from Ixodes ricinus inhabiting Tver Province (Russia): A sympatric region for I. ricinus and Ixodes persulcatus. Vector Borne Zoonotic Dis. 2020; 20(12): 921–923. https://doi.org/10.1089/ vbz.2020.2653.
 
14.
Jahfari S, Ruyts SC, Frazer-Mendelewska E, et al. Melting pot of tick -borne zoonoses: the European hedgehog contributes to the main tenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasit Vectors. 2017; 10(1): 134. https://doi.org/10.1186/s13071....
 
15.
Crowder CD, Carolan HE, Rounds MA, et al. Prevalence of Borrelia miyamotoi in Ixodes ticks in Europe and the United States. Emerg Infect Dis. 2014; 20(10): 1678–1682. https://doi.org/10.3201/eid201....
 
16.
Hamer SA, Graham J, Hickling GJ, et al. Associations of passerine birds, rabbits, and ticks with Borrelia miyamotoi and Borrelia an dersonii in Michigan, U.S.A. Parasit Vectors. 2012; 5: 231. https://doi.org/10.1186/1756-3....
 
17.
Takano A, Toyomane K, Konnai S, et al. Tick surveillance for relapsing fever spirochete Borrelia miyamotoi in Hokkaido, Japan. PLoS One. 2014; 9(8): e104532. https://doi.org/10.1371/journa....
 
18.
Jiang BG, Jia N, Jiang JF, et al. Borrelia Miyamotoi infections in humans and ticks, northeastern China. Emerg Infect Dis. 2018; 24(2): 236–241.https://doi.org/10.3201/eid240....
 
19.
Yang Y, Yang Z, Kelly P, et al. Borrelia miyamotoi sensu lato in Père David deer and Haemaphysalis longicornis ticks. Emerg Infect Dis. 2018; 24(5): 928–931. https://doi.org/10.3201/eid240....
 
20.
Raileanu C, Moutailler S, Pavel I, et al. Borrelia diversity and co -infection with other tick borne pathogens in ticks. Front Cell Infect Microbiol. 2017; 7: 36. https://doi.org/10.3389/fcimb.....
 
21.
Hansford KM, Fonville M, Jahfari S, et al. Borrelia miyamotoi in host-seeking Ixodes ricinus ticks in England. Epidemiol Infect. 2015; 143(5): 1079–1087. https://doi.org/10.1017/S09502....
 
22.
Layzell SJ, Bailey D, Peacey M, et al. Prevalence of Borrelia burgdorferi and Borrelia miyamotoi in questing Ixodes ricinus ticks from four sites in the UK. Ticks Tick Borne Dis. 2018; 9(2): 217–224. https://doi. org/10.1016/j.ttbdis.2017.09.007.
 
23.
Reiter M, Schötta AM, Müller A, et al. A newly established real-time PCR for detection of Borrelia miyamotoi in Ixodes ricinus ticks. Ticks Tick Borne Dis. 2015; 6(3): 303–308. https://doi.org/10.1016/j.ttb -dis.2015.02.002.
 
24.
Cochez C, Heyman P, Heylen D, et al. The Presence of Borrelia miyamotoi, a relapsing fever spirochaete, in questing Ixodes ricinus in Belgium and in The Netherlands. Zoonoses Public Health. 2015; 62(5): 331–333. https://doi.org/10.1111/zph.12....
 
25.
Kniazeva V, Pogotskaya Y, Higgs S, et al. The prevalence of different human pathogenic microorganisms transmitted by Ixodes tick vectors in Belarus. Vector Borne Zoonotic Dis. 2021; 21(1): 6–10. https://doi. org/10.1089/vbz.2020.2675.
 
26.
Michelet L, Delannoy S, Devillers E, et al. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol. 2014;4: 103. https://doi.org/10.3389/fcimb.....
 
27.
Laaksonen M, Sajanti E, Sormunen JJ, et al. Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg Microbes Infect. 2017; 6(5): e31. https://doi.org/10.1038/emi.20....
 
28.
Sormunen JJ, Penttinen R, Klemola T, et al. Tick-borne bacterial pat hogens in southwestern Finland. Parasit Vectors. 2016; 9: 168. https://doi.org/10.1186/s13071....
 
29.
Sormunen JJ, Klemola T, Hänninen J, et al. The importance of study duration and spatial scale in pathogen detection-evidence from a tick-infested island. Emerg Microbes Infect. 2018; 7(1): 189. https://doi. org/10.1038/s41426-018-0188-9.
 
30.
Cosson J-F, Michelet L, Chotte J, et al. Genetic characterization of the human relapsing fever spirochete Borrelia miyamotoi in vectors and animal reservoirs of Lyme disease spirochetes in France. Parasit Vectors. 2014; 7: 233. https://doi.org/10.1186/1756-3....
 
31.
Díaz P, Arnal JL, Remesar S, et al. Molecular identification of Borrelia spirochetes in questing Ixodes ricinus from northwestern Spain. Parasit Vectors. 2017; 10(1): 615. https://doi.org/10.1186/s13071....
 
32.
van Duijvendijk G, Coipan C, Wagemakers A, et al. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasit Vectors. 2016; 9: 97. https://doi.org/10.1186/s13071....
 
33.
Wagemakers A, Jahfari S, de Wever B, et al. Borrelia miyamotoi in vectors and hosts in The Netherlands. Ticks Tick Borne Dis. 2017; 8(3):370–374. https://doi.org/10.1016/j.ttbd....
 
34.
Capligina V, Seleznova M, Akopjana S, et al. Large-scale countrywide screening for tick-borne pathogens in field-collected ticks in Latvia during 2017–2019. Parasit Vectors. 2020; 13(1): 351. https://doi.org/10.1186/ s13071-020-04219-7.
 
35.
Venczel R, Knoke L, Pavlovic M, et al. A novel duplex real-time PCR permits simultaneous detection and differentiation of Borrelia miya motoi and Borrelia burgdorferi sensu lato. Infection. 2016; 44(1): 47–55. https://doi.org/10.1007/s15010....
 
36.
Szekeres S, Lügner J, Fingerle V, et al. Prevalence of Borrelia miyamotoi and Borrelia burgdorferi sensu lato in questing ticks from a recreational coniferous forest of East Saxony, Germany. Ticks Tick Borne Dis. 2017; 8(6): 922–927. https://doi.org/10.1016/j.ttbd....
 
37.
Eshoo MW, Crowder CD, Carolan HE, et al. Broad-range survey of tick-borne pathogens in Southern Germany reveals a high prevalence of Babesia microti and a diversity of other tick-borne pathogens. Vector Borne Zoonotic Dis. 2014; 14(8): 584–591. https://doi.org/10.1089/vbz.20....
 
38.
Răileanu C, Tauchmann O, Vasić A, et al. Borrelia miyamotoi and Borrelia burgdorferi (sensu lato) identification and survey of tick-borne encephalitis virus in ticks from north-eastern Germany. Parasit Vectors. 2020; 13: 106. https://doi.org/10.1186/s13071....
 
39.
Kjelland V, Rollum R, Korslund L, et al. Borrelia miyamotoi is wide spread in Ixodes ricinus ticks in southern Norway. Ticks Tick Borne Dis. 2015; 6(4): 516–521. https://doi.org/10.1016/j.ttbd....
 
40.
Sytykiewicz H, Karbowiak G, Chorostowska-Wynimko J, et al. Coexistence of Borrelia burgdorferi s.l. genospecies within Ixodes ricinus ticks from central and eastern Poland. Acta Parasitol. 2015; 60(4): 654–661. https://doi.org/10.1515/ap-201....
 
41.
Kiewra D, Stańczak J, Richter M. Ixodes ricinus ticks (Acari, Ixodidae) as a vector of Borrelia burgdorferi sensu lato and Borrelia miyamotoi in Lower Silesia, Poland-preliminary study. Ticksn and Tick Borne Dis. 2014; 5: 892–897. https://doi.org/10.1016/j.ttbd....
 
42.
Kowalec M, Szewczyk T, Welc-Falęciak R, et al. Ticks and the city – are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit Vectors. 2017; 10(1): 573. https://doi.org/10.1186/s13071....
 
43.
Wodecka B, Leońska A, Skotarczak B. A comparative analysis of molecular markers for the detection and identification of Borrelia spirochaetes in Ixodes ricinus. J Med Microbiol. 2010; 59(Pt 3): 309–314. https://doi. org/10.1099/jmm.0.013508-0.
 
44.
Nunes M, Parreira R, Lopes N, et al. Molecular identification of Borrelia miyamotoi in Ixodes ricinus from Portugal. Vector Borne Zoonotic Dis. 2015; 15(8): 515–517. https://doi.org/10.1089/vbz.20....
 
45.
Kalmár Z, Sprong H, Mihalca AD, et al. Borrelia miyamotoi and Candidatus Neoehrlichia mikurensis in Ixodes ricinus Ticks, Romania. Emerg Infect Dis. 2016; 22(3): 550–551. https://doi.org/10.3201/eid220....
 
46.
Potkonjak A, Kleinerman G, Gutiérrez R, et al. Occurrence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks with first identification of Borrelia miyamotoi in Vojvodina, Serbia. Vector Borne Zoonotic Dis. 2016; 16(10): 631–635. https://doi.org/10.1089/vbz.20....
 
47.
Hamšíková Z, Coipan C, Mahríková L, et al. Borrelia miyamotoi and co-infection with Borrelia afzelii in Ixodes ricinus ticks and rodents from Slovakia. Microb Ecol. 2017; 73(4): 1000–1008. https://doi.org/10.1007/ s00248-016-0918-2.
 
48.
Oechslin CP, Heutschi D, Lenz N, et al. Prevalence of tick-borne pat hogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit Vectors. 2017; 10(1): 558. https://doi.org/10.1186/.s1307....
 
49.
Rogovskyy A, Batool M, Gillis DC, et al. Diversity of Borrelia spirochetes and other zoonotic agents in ticks from Kyiv, Ukraine. Ticks Tick Borne Dis. 2018; 9(2): 404–409. https://doi.org/10.1016/j.ttbd....
 
50.
Szekeres S, Coipan EC, Rigó K, et al. Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasit Vectors. 2015; 8: 309. https:// doi.org/10.1186/s13071-015-0922-2.
 
51.
Ravagnan S, Tomassone L, Montarsi F, et al. First detection of Borrelia miyamotoi in Ixodes ricinus ticks from northern Italy. Parasit Vectors. 2018; 11: 130. https://doi.org/10.1186/s13071....
 
52.
Scoles GA, Papero M, Beati L, et al. A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 2001; 1(1): 21–34. https://doi.org/10.1089/153036....
 
53.
Tokarz R, Jain K, Bennett A, et al. Assessment of polymicrobial infec- tions in ticks in New York State. Vector Borne Zoonotic Dis. 2010; 10(3): 217–221. https://doi.org/10.1089/vbz.20....
 
54.
Tadin A, Tokarz R, Markotić A, et al. Molecular survey of zoonotic agents in rodents and other small mammals in Croatia. Am J Trop Med Hyg. 2016; 94(2): 466–473. https://doi.org/10.4269/ajtmh.....
 
55.
Gryczyńska A, Sokół M, Gortat T, et al. Borrelia miyamotoi infection in Apodemus spp. mice populating an urban habitat (Warsaw, Poland). IntJ Parasitol Parasites Wildl. 2021; 14: 138–140. https://doi.org/10.1016/j.ijpp....
 
56.
Kalmár Z, Sándor AD, Matei IA, et al. Borrelia spp. in small mammals in Romania. Parasit Vectors. 2019; 12: 461. https://doi.or /10.1186/ s13071-019-3713-3.
 
57.
Cerar T, Korva M, Avšič-Županc T, et al. Detection, identification and genotyping of Borrellia spp. in rodents in Slovenia by PCR and culture. BMC Vet Res. 2015; 11: 188. https://doi.org/10.1186/s12917....
 
58.
Burri C, Schumann O, Schumann C, et al. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Ana- plasma phagocytophilum? Ticks Tick Borne Dis. 2014; 5(3): 245–251. https://doi.org/10.1016/j.ttbd....
 
59.
Szekeres S, Docters van Leeuwen A, Tóth E, et al. Road-killed mammals provide insight into tick-borne bacterial pathogen communities within urban habitats. Transbound Emerg Dis. 2019; 66(1): 277–286. https:// doi.org/10.1111/tbed.13019.
 
60.
Scott MC, Rosen ME, Hamer SA, et al. High-prevalence Borrelia miyamotoi infection among wild turkeys (Meleagris gallopavo) in Tennessee. J Med Entomol. 2010; 47(6): 1238–1242. https://doi.org/10.1603/ ME10075.
 
61.
Platonov AE, Karan LS, Kolyasnikova NM, et al. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg Infect Dis. 2011; 17(10): 1816–1823. https://doi.org/10.3201/eid171....
 
62.
Molloy PJ, Telford SR 3rd, Chowdri HR, Lepore TJ, Gugliotta JL, Weeks KE, Hewins ME, Goethert HK, Berardi VP. Borrelia miyamotoi disease in the Northeastern United States: A case series. Ann Intern Med. 2015; 163(2): 91–98. https://doi.org/10.7326/M15-03....
 
63.
Hoornstra D, Koetsveld J, Sprong H, et al. Borrelia miyamotoi disease in an immunocompetent patient, Western Europe. Emerg Infect Dis. 2018; 24(9): 1770–1772. https://doi.org/10.3201/eid240....
 
64.
Henningsson AJ, Asgeirsson H, Hammas B, et al. Two cases of Borrelia miyamotoi meningitis, Sweden, 2018. Emerg Infect Dis. 2019; 25(10): 1965–1968. https://doi.org/10.3201/eid251....
 
65.
Tobudic S, Burgmann H, Stanek G, et al. Human Borrelia miyamotoi infection, Austria. Emerg Infect Dis. 2020; 26(9): 2201–2204. https:// doi.org/10.3201/eid2609.191501.
 
66.
Jobe DA, Lovrich SD, Oldenburg DG, et al. Borrelia miyamotoi infection in patients from Upper Midwestern United States, 2014–2015. Emerg Infect Dis. 2016; 22(8): 1471–1473. https://doi.org/10.3201/eid220....
 
67.
Hayashi T, Miura Y, Kawabata H. Borrelia miyamotoi disease rash. Intern Med. 2018; 57(17): 2601–2602. https://doi.org/10.2169/intern....
 
68.
Gugliotta JL, Goethert HK, Berardi V, et al. Meningoencephalitis fromBorrelia miyamotoi in an immunocompromised patient. N Engl J Med.2013; 368: 240–245. https://doi.org/10.1056/NEJMoa....
 
69.
Hovius JW, de Wever B, Sohne M, et al. A case of meningoencephalitis by the relapsing fever spirochaete Borrelia miyamotoi in Europe. Lancet. 2013; 382(9892): 658. https://doi.org/10.1016/S0140-....
 
70.
Boden K, Lobenstein S, Hermann B, et al. Borrelia miyamotoi–asso - ciated neuroborreliosis in immunocompromised person. Emerg Infect Dis. 2016; 22(9): 1617–1620. https://doi.org/10.3201/eid220....
 
71.
Fiecek B, Lewandowska G, Roguska U, et al. Borrelia miyamotoi DNA in a patient suspected of Lyme borreliosis. (Preprint) 2019. https://doi. org/10.21203/rs.2.15315/v2 (access: 2021.10.18).
 
72.
Jahfari S, Herremans T, Platonov AE, et al. High seroprevalence of Borrelia miyamotoi antibodies in forestry workers and individuals suspected of human granulocytic anaplasmosis in the Netherlands. New Microbes New Infect. 2014; 2(5): 144–149. https://doi.org/10.1002/ nmi2.59.
 
73.
Boyer PH, Koetsveld J, Zilliox L, et al. Assessment of Borrelia miya motoi in febrile patients and ticks in Alsace, an endemic area for Lyme borreliosis in France. Parasit Vectors. 2020; 13(1): 199. https://doi. org/10.1186/s13071-020-04071-9.
 
74.
Krause PJ, Narasimhan S, Wormser GP, et al. Tick borne diseases group. Borrelia miyamotoi sensu lato seroreactivity and seroprevalence in the northeastern United States. Emerg Infect Dis. 2014; 20(7): 1183–1190. https://doi.org/10.3201/eid200....
 
75.
Brummitt SI, Kjemtrup AM, Harvey DJ, et al. Borrelia burgdorferi and Borrelia miyamotoi seroprevalence in California blood donors. PLoS One. 2020; 15(12): e0243950. https://doi.org/10.1371/journa.... pone.0243950.
 
76.
Kadkhoda K, Dumouchel C, Brancato J, et al. Human seroprevalence of Borrelia miyamotoi in Manitoba, Canada, in 2011–2014: a cross-sectional study. CMAJ Open. 2017; 5(3): E690-E693. https://doi.org/10.9778/ cmajo.20170070.
 
77.
Sato K, Sakakibara K, Masuzawa T, et al. Case control study: Serological evidence that Borrelia miyamotoi disease occurs nationwide in Japan. J Infect Chemother. 2018; 24(10): 828–833. https://doi.org/10.1016/j. jiac.2018.06.017.
 
78.
Jahfari S, Sarksyan DS, Kolyasnikova NM, et al. Evaluation of a serological test for the diagnosis of Borrelia miyamotoi disease in Europe.J Microbiol Methods. 2017; 136: 11–16. https://doi.org/10.1016/j.mi -met.2017.02.013.
 
79.
Reiter M, Stelzer T, Schötta AM, et al. Glycerophosphodiester pho - sphodiesterase identified as non-reliable serological marker for Borrelia miyamotoi disease. Microorganisms. 2020; 8(12): 1846. https://doi.org/10.3390/microo....
 
80.
Koetsveld J, Kolyasnikova NM, Wagemakers A, et al. Development and optimization of an in vitro cultivation protocol allows for isolation of Borrelia miyamotoi from patients with hard tick-borne relapsing fever. Clin Microbiol Infect. 2017; 23(7): 480–484. https://doi.org/10.1016/j. cmi.2017.01.009.
 
81.
Soares GM, Figueiredo LC, Faveri M, et al. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. J Appl Oral Sci. 2012; 20(3): 295–309. https://doi.org/10.1590/s1678-....
 
82.
Karan L, Makenov M, Kolyasnikova N, et al. Dynamics of spirochetemia and early PCR detection of Borrelia miyamotoi. Emerg Infect Dis. 2018; 24: 860–867. https://doi.org/10.3201/eid240....
 
eISSN:2084-4905
ISSN:2083-4543
Journals System - logo
Scroll to top