PRACA POGLĄDOWA
Związki bioaktywne w mięsie i ich znaczenie w żywieniu człowieka
 
Więcej
Ukryj
1
Uniwersytet Przyrodniczy w Lublinie, Polska
AUTOR DO KORESPONDENCJI
Piotr Domaradzki   

Uniwersytet Przyrodniczy w Lublinie, Akademicka, 20-258, Lublin, Polska
 
Med Og Nauk Zdr. 2019;25(3):170–180
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE ARTYKUŁU
Wprowadzenie i cel pracy.:
Mięso i podroby zwierząt rzeźnych pod względem wartości odżywczej zaliczane są do najbardziej cennych produktów, dostarczają bowiem wielu składników odżywczych, budulcowych i regulujących. Chociaż mięso jest powszechnie postrzegane jako źródło białka, witamin i składników mineralnych, to badania ostatnich lat wskazują, iż jest również ważnym źródłem substancji bioaktywnych, przyczyniających się do prawidłowego funkcjonowania organizmu człowieka. Celem pracy jest przedstawienie najważniejszych związków biologicznie czynnych występujących w mięsie i omówienie ich funkcji prozdrowotnych w organizmie człowieka.

Skrócony opis stanu wiedzy.:
Do głównych związków bioaktywnych obecnych w mięsie zaliczyć należy: L-karnitynę, kreatynę, karnozynę, anserynę, taurynę, sprzężony kwas linolowy, kwas α-liponowy, koenzym Q10, kwas γ-aminomasłowy, glutation oraz bioaktywne peptydy. Wpływają one pozytywnie na pracę m.in. serca, mózgu, mięśni oraz ich regenerację. Mają również znaczący wpływ na regulację metabolizmu. Warto również podkreślić, że biodostępność wielu z tych składników odżywczych występujących w mięsie jest większa w porównaniu do alternatywnych produktów spożywczych np. pochodzenia roślinnego.

Podsumowanie:
Według badań antropologów spożywanie wysokowartościowego produktu, jakim było mięso, przyczyniło się do przyspieszenia ewolucji człowieka. Również w dzisiejszych czasach mięso stanowi ważny składnik diety nie tylko ze względu na zaspokajanie potrzeb odżywczych organizmu, ale również obecność wielu substancji biologicznie czynnych. Należy podkreślić, iż odpowiednia podaż związków bioaktywnych zapewnia optymalny wzrost i rozwój organizmu człowieka, jak również może wykazywać działanie prewencyjne w przypadku wielu chorób cywilizacyjnych.


Introduction and objective:
Meat and offal from slaughter animals are the most valuable products in terms of nutritional value, because they provide many nutrients, building and regulating substances. Although meat is commonly perceived as a source of protein, vitamins and minerals, recent studies indicate that it is also an important source of bioactive substances contributing to the proper functioning of the human body. The aim of the study is to present the most important biologically active compounds found in meat and to discuss their pro-health functions in the human body.

Description of the state of knowledge:
The main bioactive compounds present in meat include: L-carnitine, creatine, carnosine, anserine, taurine, conjugated linoleic acid, α-lipoic acid, coenzyme Q10, γ-aminobutyric acid, glutathione and bioactive peptides. They have a positive impact on the heart, brain, muscle health and their regeneration. They also have a significant effect on the metabolism regulation. It is also worth noting that the bioavailability of many of these nutrients found in meat is greater, compared to plants-based food products.

Summary:
According to anthropologists, the consumption of a high-value product such as meat contributed to acceleration of human evolution. Today, it is also an important component of the diet not only because of the nutritional requirements of the body, and the presence of many biologically active substances. It should be emphasized that an appropriate supply of bioactive compounds ensures the optimal growth and development of the human body, and may also have a preventive effect in many civilization diseases.

FINANSOWANIE
Pracę zrealizowano z: „Projektu finansowanego w ramach programu Ministra Nauki i Szkolnictwa Wyższego pod nazwą „Regionalna Inicjatywa Doskonałości” w latach 2019 - 2022 nr projektu 029/RID/2018/19 kwota finansowania 11 927 330,00 zł”
 
REFERENCJE (128)
1.
Pereira PMCC, Vincente AFRB. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013; 93(3): 586–592. https:// doi.org/10.1016/j.meatsci.2012....
 
2.
Larsen CS. Animal Source Foods and Human Health during Evolution. J. Nutr. 2003; 133(11): 3893–3897. https://doi.org/10.1093/ jn/133.11.3893S.
 
3.
Bodkowski R, Patkowska-Sokoła B, Nowakowski P, Jamroz D, Janczak M. Produkty pochodzące od przeżuwaczy – najważniejsze źródło L-karnityny w diecie człowieka. Prz Hod 2011; 79(10): 22–25.
 
4.
Roseiro LC, Santos C. Carnitines (Including L-Carnitine Acetyl- -Carnitine and Proprionyl-Carnitine). W: Nabavi SM, Silva AS (red.). Nonvitamin and Nonmineral Nutritional Supplements. Elsevier, 2019; 45–52.
 
5.
Purchas RW, Rutherfurd SM, Pearce PD, Vather R, Wilkinson BHP. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 2004; 66(3): 629–637. https://doi.org/10.1016/ S0309-1740(03)00181-5.
 
6.
Pinar E, Sedef NE. Changes in content of coenzyme Q10 in beef muscle, beef liver and beef heart with cooking and in vitro digestion. J Food Compos Anal. 2011; 24(8): 1136–1140. https://doi.org/10.1016/j. jfca.2011.05.002.
 
7.
Kiliś-Pstrusińska K. Karnozyna i karnozynaza a choroby nerek. Postep Hig Med Dosw. 2012; 66: 215–221.
 
8.
Jones DP, Coates RJ, Flagg EW, Eley JW, Block G, Greenberg RS, Gunter EW, Jackson B. Glutathione in foods listed in the National Cancer Institute’s health habits and history food frequency questionnaire. Nutr Cancer. 1992; 17(1): 57–75.
 
9.
Florek M, Drozd L. Związki bioaktywne w mięsie jeleniowatych. Med Weter. 2013; 69(9): 535–539.
 
10.
Ahhmed AM, Muguruma M. A review of meat protein hydrolysates and hypertension. Meat Sci. 2010; 86(1): 110–118. https://doi. org/10.1016/j.meatsci.2010.04.032.
 
11.
Cardenia V, Massimini M, Poerio A, Venturini M, Rodriguez-Estrada M, Vecchia P, Larcker G. Effect of dietary supplementation on lipid photooxidation in beef meat, during storage under commercial retail conditions. Meat Sci. 105: 126–135. https://doi.org/10.1016/j. meatsci.2015.02.010.
 
12.
Lafarga T, Hayes M. Bioactive peptides from meat muscle and by- -products: generation, functionality and application as functional ingredients. Meat Sci. 2014; 98(2): 227–239. https://doi.org/10.1016/j. meatsci.2014.05.036.
 
13.
Bhakta G, Lim ZXH, Rai B, Lin T, Hui JH, Prestwich GD, van Wijnen AJ, Nurcombe V, Cool SM. The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation. Acta Biomater. 2013; 9(11): 9098–9106. https://doi.org/ 10.1016/j.actbio.2013.07.008.
 
14.
Sentandreu MA, Coulis G, Ouali A. Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends Food Sci Technol. 2002; 13(12): 400–421. https://doi.org/ 10.1016/S0924-2244(02)00188-7.
 
15.
Di Bernardini R, Harnedy P, Bolton D, Kerry J, O’Neill E, Mullen AM, Hayes, M. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem. 2011; 124(4), 1296–1307. https://doi.org/10.1016/j.food....
 
16.
Gianfrancheschi GL, Gianfrancheschi G, Quassinti L, Bramucci M. Biochemical requirements of bioactive peptides for nutraceutical efficacy. J Funct Foods 2018; 47: 252–263. https://doi.org/10.1016/j. jff.2018.05.034.
 
17.
Liu D, Chen X, Huang J, Huang M, Zhou G. Generation of bioactive peptides from duck meat during post-mortem aging. Food Chem. 2017; 237: 408–415. https://doi.org/10.1016/j.food....
 
18.
Okoń A, Stadnik J, Dolatowski ZJ. Effect of Lactobacillus acidophilus Bauer and Bifidobacterium animalis spp. Lactis B12 on proteolytic changes in dry-cured loins. Food Sci Biotechnol. 2017; 26(3): 633–641. https://doi.org/10.1007/s10068....
 
19.
Katayama K, Anggraeni EH, Mori T, Ahhmed MA, Kawahara S, Sugiyama M, Nakayama T, Maruyama M, Muguruma M. Porcine skeletal muscle troponin is a good source of peptides with angiotensin- -I activity and antihypertensive effects in spontaneously hypertensive rats. J Agric Food Chem. 2008; 56(2): 355−360. https://doi.org/10.1021/ jf071408j.
 
20.
Martinez-Alvarez O. Hormone-like peptides obtained by marine- -protein hydrolysis and their bioactivities. W: Kim SK (red.). Marine proteins and peptides: biological activities and applications. New Jersey: Wiley-Blackwell; 2013: 351–368.
 
21.
Lorenzo JM, Munekata PES, Gomez B, Barba FJ, Mora L, Perez-Santaescolastica C, Toldra F. Bioactive peptides as natural antioxidants in food products – A review. Trends Food Sci Technol. 2018; 79: 136–147. https://doi.org/10.1016/j.tifs....
 
22.
Czeczot H, Ścibior D. Rola L-karnityny w przemianach, żywieniu i terapii. Postep Hig Med Dosw. 2005; 59, 9–19.
 
23.
Demarquoy J, Georges B, Rigault C, Royer MC, Clairet A, Soty M, Lekounoungou S, Le Borgne F. Radioisotopic determination of l-carnitine content in foods commonly eaten in Western countries. Food Chem. 2004; 86(1): 137–142. https://doi.org/10.1016/j.food....
 
24.
Knüttel-Gustavsen S, Harmeyer J. The determination of l-carnitine in several food samples. Food Chem. 2007; 105(2): 793–804. https://doi. org/ 10.1016/j.foodchem.2007.01.058.
 
25.
Oliveira C, Sousa M. The effects of L-carnitine supplementation in athletic performance. Sci Sports. 2019; 34(2): 63–72. https://doi.org/ 10.1016/j.scispo.2018.09.005.
 
26.
Swart I, Rossouw J, Loots JM, Kruger MC. The effect of L-carnitine supplementation on plasma carnitine levels and various performance parameters of male marathon athletes. Nutr Res. 1997; 17: 405–414.
 
27.
Huang A, Owen K. Role of supplementary L-carnitine in exercise and exercise recovery. Med Sport Sci. 2012; 59: 135–142. https://doi. org/10.1159/000341934.
 
28.
Sung DJ, Kim S, Kim J, An HS, So WY. Role of L-carnitine in sports performance: Focus on ergogenic aid and antioxidant. Sci Sports. 2016; 31(4): 177–188. https://doi.org/10.1016/j.scis....
 
29.
Evans M, Guthrie N, Pezzullo J, Sanli T, Fielding RA, Bellamine A. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strengthin healthy older adults: a randomized, double-blind placebo-controlled study. Nutr Metab (Lond) 2017; 14: 7. https://doi.org/ 10.1186/s12986-016-0158-y.
 
30.
Ferraretto A, Bottani M, Villa I, Giustio L, Signo M, Senesi P, Montesano A, Vacante F, Luzi L, Rubinacci A, Terruzzi I. L-Carnitine activates calcium signaling in human osteoblasts. J Funct Foods 2018; 47(4): 270–278. https://doi.org/10.1016/j.jff.....
 
31.
Wang Z, Liu G, Lu H, Mao C. L-carnitine and heart disease. Life Sci. 2018; 194: 88–97. https://doi.org/10.1016/j.lfs.....
 
32.
Williams MH, Kreider RB, Branch JD. Creatine: the power supplement. Human Kinetics, 1999.
 
33.
Cooper R, Naclerio F, Allgrove J, Jimenez A. Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr. 2012; 9: 33. https://doi.org/10.1186/1550-2....
 
34.
Adriano E, Gulino M, Arkel M, Salis A, Damonte G, Liessi N, Millo E, Garbati P, Balestrino M. Di-acetyl creatine ethyl ester, a new creatine derivative for the possible treatment of creatine transporter deficiency. Neurosci Lett. 2018; 665: 217–223. https://doi.org/10.1016/j. neulet.2017.12.020.
 
35.
Tarnopolsky MA. Caffeine and Creatine Use in Sport. Ann Nutr Metab. 2010; 57(2): 1–8. https://doi.org/10.1159/000322....
 
36.
Jagiełło W, Kruszewski M, Banach J. Effects of creatine supplementation on body mass and muscle girths in bodybuilders. Biomed Hum Kinet. 2010; 2: 47–50.
 
37.
Miny K, Burrowes J, Jidovtseff B. Interest of creatine supplementation in soccer. Sci Sports 2017; 32: 61–72. https://doi.org/10.1016/j. scispo.2016.11.001.
 
38.
Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: The untapped potential of creatine. Int Immunopharmacol. 2016; 37: 31–42. https://doi.org/10.1016/j.inti....
 
39.
Szewczyk PB, Poniewierka E. Kreatyna – zastosowanie w sporcie i medycynie. Piel Zdr Publ. 2015; 5(4): 409–416. https://doi.org/10.17219/ pzp/60488.
 
40.
Morawska-Staszak K. Wpływ suplementacji kreatyną na całkowity potencjał antyoksydacyjny oraz wydolność psychofizyczną u pacjentów z przewlekłymi schorzeniami wątroby. Rozprawa doktorska. Uniwersytet Medyczny im. K. Marcinkowskiego w Poznaniu. 2012; 13–16.
 
41.
Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem. 2017; 529: 144–157. https://doi. org/10.1016/j.ab.2016.11.007.
 
42.
Ferrante R, Andreassen O, Jenkins B, Dedeogl A, Kuemmerle S, Kubilus J, Kaddurah-Daouk R. Hersch S, Flint-Beal M. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J. Neurosci. 2000; 20(12): 4389–4397.
 
43.
Rawson ES, Lieberman HR, Walsh TM, Zuber SM, Harhart JM, Matthews TC. Creatine supplementation does not improve cognitive function in young adults. Physiol Behav. 2008; 95(1–2): 130–134. https://doi.org/10.1016/j.phys....
 
44.
Pazini FL, Cunha MP, Rodrigues ALS. The possible beneficial effects of creatine for the management of depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89: 193–206. https://doi.org/10.1016/j. pnpbp.2018.08.029.
 
45.
Percario S, Domingues SPT, Teixeira LFM, Vieira JLF, Vasconcelos F, Ciarrocchi DM, Almeida ED, Conte M. Effects of creatine supplementation on oxidative stress profile of athletes. J Int Soc Sports Nutr. 2012; 9(1): 56. https://doi.org/10.1186/1550-2....
 
46.
Zięba R. Karnozyna – aktywność biologiczna i perspektywy zastosowania w farmakoterapii. Wiad Lek. 2007; 60(1–2): 73–79.
 
47.
Syta EA, Ginalska G, Kazimierczak P. Bioaktywne właściwości karnozyny. Med Ogólna Nauki Zdr. 2018; 24(2): 96–100. https://doi. org/10.26444/monz/90885.
 
48.
Kang JH., Kim KS. Enhanced oligomerization of the alpha-synuclein mutant by the Cu, Zn-superoxide dismutase and hydrogen peroxide system. Mol Cells. 2003; 15(1): 87–93.
 
49.
Peiretti P, Medana C, Visentin S, Giancotti V, Zunino V, Meineri G. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances content in meat from different animal species. Food Chem. 2011; 126(4): 1939–1947. https:// doi.org/10.1016/j.foodchem.201....
 
50.
D’Astous-Page J, Geriepy C, Blouin R, Cliche S, Sullivan B, Fortin F, Palin MF. Carnosine content in the porcine longissimus thoracis muscle and its association with meat quality attributes and carnosine-realted gene expression. Meat Sci. 2017; 124: 84–94. https://doi.org/10.1016/j. meatsci.2016.11.004.
 
51.
Mori M, Mizuno D, Konoha-Mizuno K, Sadakane Y, Kawahara M. Quantitive analysis of carnosine and anserine in foods by performing high performance liquid chromatography. Biomed Res Trace Elem. 2015; 26(3): 147–152. https://doi.org/10.11299/brte.....
 
52.
Florek M, Barłowska J, Litwińczuk Z. Mleko i mięso zwierząt przeżuwających jako źródło substancji biologicznie czynnych. Prz Hod. 2016; 3: 4–7.
 
53.
Shao L, Li QH, Tan Z. L-carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. Biochem Biophys Re. Commun. 2004; 324(2): 931–936. https://doi.org/10.1016/j.bbrc....
 
54.
Szcześniak D, Budzeń S, Kopeć W, Rymaszewska J. Anserine and carnosine supllementation in the elderly: Effects on cognitive functioning and physical capacity. Arch Gerontol Geriatr. 2014; 59(2): 485–490. https://doi.org/ 10.1016/j.archger.2014.04.008.
 
55.
de Courten B, Jakubova M, do Courten MP, Kukurova IJ, Vallova S, Krumpolec P, Valkovic L, Kurdiova T, Garzon D, Barbaresi S, Teede HJ, Derave W, Krssak M, Aldini G, Ukropec J, Ukropcova B. Effects of carnosine supplementation on glucose metabolism: pilot clinical trial. Obesity (Silver Spring). 2016; 24(5): 1027–1034. https://doi.org/ 10.1002/oby.21434.
 
56.
Aloisi A, Barca A, Romano A, Guerrieri S, Storelli C, Rialdi R, Verri T. Anti-aggregating effect of the naturally occurring dipeptide carnosine on abeta1–42 fibril formation. PLoS One. 2013; 8(7): e68159. https:// doi.org/10.1371/journal.pone.0....
 
57.
Boldyrev A, Fedorova T, Stepanova M, Dobrotvorskaya I, Kozlova E, Boldanova N, Bagyeva G, Ivanova-Smolenskaya I, Illarioshkin S. Carnosine [corrected] increases efficiency of DOPA therapy of Parkinson’s disease: a pilot study. [Erratum appears in Rejuvenation Res. 2008; 11(5): 988], Rejuvenation Res. 2008; 11(4): 821–827. https:// doi.org/10.1089/rej.2008.0716.
 
58.
Brown BE, Kim CH, Torpy FR, Bursill CA, McRobb LS, Heater AK, Davies MJ, van Reyk DM. Supplementation with carnosine decreases plasma triglycerides and modulates atherosclerotic plaque composition in diabetic apo E(−/−) mice. Atherosclerosis. 2014; 232(2): 403–409. https://doi.org/10.1016/j.athe....
 
59.
Menini S, Iacobini C, Ricci C, Blasetti Fantauzzi C, Pugliese G. Protection from diabetes-induced atherosclerosis and renal disease by D-carnosine-octylester: effets of early vs late inhibition of advanced glycation end-products in Apoe-null mice. Diabetologia. 2015; 58(4): 845–853. https://doi.org/10.1007/s00125....
 
60.
Ansurudeen I, Sunkari VG, Grunler J, Peters V, Schmitt CP, Catrina SB, Brismar K, Forsberg EA. Carnosine enhances diabetic wound healing in the db/db mouse model of type 2 diabetes. Amino Acids. 2012; 43(1): 127–134. https://doi.org/ 10.1007/s00726-012-1269-z.
 
61.
McGinnis WR. Oxidative stress in autism. Altern Ther Health Med. 2004; 10(6): 22–36.
 
62.
Matsukura T, Tanaka H. Applicability of zinc complex of L-carnosine for medical use. Biochemistry (Mosc) 2000; 65(7): 817–823.
 
63.
Huxtable RJ. Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol. 1992; 32(6): 471–533.
 
64.
Szymański K, Winiarska K. Tauryna i jej potencjalne wykorzystanie w terapii. Postepy Hig Med Dosw. 2008; 62: 75–86.
 
65.
Lourenco R, Camilo ME. Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp. 2002; 17(6): 262–270.
 
66.
Beyranvand MR, Khalafi MK, Roshan VD, Choobineh S, Parsa SA, Piranfar MA. Effects of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol. 2011; 57(3): 333–337. https:// doi.org/ 10.1016/j.jjcc.2011.01.007.
 
67.
Salze GP, Davis DA. Taurine: a critical nutrient for future fish feeds. Aquaculture, 2015; 437: 215–229. https://doi.org/10.1016/j.aqua....
 
68.
Oja S, Sarasaari P. Taurine. W: Lajtha A (red.). Handbook of Neurochemistry and Molecular Neurobiology. Amino Acids and Peptides in the Nervous System. Wyd. Springer US; 2007: 155–206.
 
69.
McLeay Y, Stannard S, Barnes M. The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males. Antioxidants (Basel). 2017; 6(4): 79. https://doi.org/10.3390/antiox....
 
70.
Zhang M, Izumi I, Kagamimori S, Sokejima S, Yamagami T, Liu Z, Qi B Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids. 2004; 26(2): 203–207. https://doi.org/10.1007/s00726....
 
71.
Spriet LL, Whitfield J. Taurine and skeletal muscle function. Curr Opin Clin Nutr Metab Care. 2015; 18(1): 96–101. https://doi.org/10.1097/ MCO.0000000000000135.
 
72.
Siemieniuk E, Skrzydlewska E. Koenzym Q10 – biosynteza i znaczenie biologiczne w organizmach zwierząt i człowieka. Postep Hig Med Dosw. 2005; 59: 150–159.
 
73.
Dallner G, Sindelar PJ. Regulation of ubiquinone metabolism. Free Ra. Bio. Med. 2000; 29(3–4): 285–294.
 
74.
Willis R, Anthony M, Sun L, Honse Y, Qiao G. Clinical implications of the correlation between coenzyme Q10 and vitamin B6 status. Biofactors. 1999; 9: 359–363. https://doi.org/10.1002/biof.5....
 
75.
Pravst I, Zmitek K, Zmitek J. Coenzyme Q10 Contents in Foods and Fortification Strategies. Crit Rev Food Sci Nutr. 2010; 50(4): 269–280. https://doi.org/ 10.1080/10408390902773037.
 
76.
Kumar A, Kaur H, Devic P, Mohan V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol & Ther. 2009; 124(3): 259–268. https://doi.org/10.1016/j.phar....
 
77.
Pregnolato P, Maranesi M, Mordenti T, Turchetto E, Barzanti V, Grossi G. Coenzyme Q10 and Q9 content in some edible oils. Riv Ital Sostanze Gr., 1994; 71(10): 503–505.
 
78.
Kubo H, Fuji K, Kawabe T, Matsumoto S, Kishida H, Hosoe K. Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet. J. Food Compos Anal. 2008; 21(3): 199–210. https://doi.org/10.1016/j. jfca.2007.10.003.
 
79.
Matilla P, Kumpulainen J. Coenzymes Q9 and Q10: Contents in foods and dietary intake. J Food Compos Anal. 2001; 14(4): 409–417. https:// doi.org/10.1006/jfca.2000.0983.
 
80.
Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta, 1995; 1271(1): 195–204.
 
81.
Lulli M, Cialdai F, Vignali L, Monici M, Luzzi S, Cicconi A, Cacchione S, Magi A, Di Gesualdo F, Balsamo M, Vukich M, Neri G, Donati A, Capaccioli S. The Coenzyme Q10 (CoQ10) as Countermeasure for Retinal Damage Onboard the International Space Station: the CORM Project, Microgravity Sci Technol. 2018; 30(6): 925–931. https://doi. org/10.1007/s12217-018-9652-3.
 
82.
Bilska A, Kryczyk A, Włodek L. Różne oblicza biologicznej roli glutationu. Postep Hig Med Dosw. 2007; 61: 438–453.
 
83.
Liu SM, Eady SJ. Glutathione: its implications for animal health, meat quality, and health benefits of consumers. Aust J Agric Res. 2005; 56(8): 775–780. https://doi.org/10.1071/AR0505....
 
84.
Dhakal R, Bajpai VK, Kwang-Hyun B. Productions of GABA (γ – aminobutyric acid) by microorganisms: a review. Braz J Microbiol. 2012; 43(4): 1230–1241. https://doi.org/ 10.1590/S1517-83822012000400001.
 
85.
Kowalski A, Rębas E, Żylińska L. Kwas γ-aminomasłowy – metabolizm i jego zaburzenia. Post Bioch. 2007; 4: 356–360.
 
86.
Diana M, Quilez J, Rafecas M. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods. 2014; 10: 407–420. https:// doi.org/ 10.1016/j.jff.2014.07.004.
 
87.
Kuda T, Tanibe R, Mori M, Take H, Michinata T, Yano T. Microbial and chemical properties of aji-no-susu, a traditional fermented fish with rice product in the Noto Peninsula, Japan. Fish Sci. 2009; 75: 1499–1506. https://doi.org/10.1007/s12562....
 
88.
Hong KB, Park Y, Suh HJ. Sleep-promoting effects of the GABA/5- -HTP mixture in vertebrate models. Behav Brain Res. 2016; 310: 36–41. https://doi.org/ 10.1016/j.bbr.2016.04.049.
 
89.
Yamatsu A, Yamashita Y, Pandharipande T, Maru I, Kim M. Effect of Oral γ-aminobutyric Acid (GABA) Administration on Sleep and its Absorption in Humans. Food Sci Biotechnol. 2016; 25(6): 547–551. https://doi.org/ 10.1007/s10068-016-0076-9.
 
90.
Renes E, Gomez-Cortes P, de la Fuente MA, Linares DM, Tornadijo ME, Fresno JM. CLA-producing adjunct cultures improve the nutritional value of sheep cheese fat. Food Res Int. 2019; 116: 819–826. https://doi.org/10.1016/j.food....
 
91.
Sadowska A, Świderski F. Związki bioaktywne w mięsie. Postępy techniki przetwórstwa spożywczego 2010; 1: 70–74.
 
92.
Koba K, Yanagita T. Health benefits of conjugated linolei acid (CLA). Obes Res Clin Pract. 2014; 8(6): 525–532. https://doi.org/10.1016/j. orcp.2013.10.001.
 
93.
Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gundmundsen O. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 2000; 130(12): 2943–2948. https:// doi.org/10.1093/jn/130.12.2943.
 
94.
Racine NM, Watras AC, Carrel AL, Allen DB, McVean JJ, Clark RR, O’Brien AR, O’Shea M, Scott CE, Schoeller DA. Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. Am J Clin Nutr. 2010; 91(5): 1157–1164. https://doi.org/10.3945/ ajcn.2009.28404.
 
95.
El-Senousey HK, Fouad AM, Yao JH, Zhang ZG, Shen QW. Dietary Alpha Lipoic Acid Improves Body Composition, Meat Quality and Decreases Collagen Content in Muscle of Broiler Chickens. Ausian- -Australas J Anim Sci. 2013; 26(3): 394–400.
 
96.
Malińska D, Winiarska K. Kwas liponowy – charakterystyka i zastosowanie w terapii. Postep Hig Med Dosw. 2005; 59: 535–543.
 
97.
Shay KP, Moreau RF, Smith EJ, Smith RA, Hagen TM. Alpha-lipoic acid as a dietary suplement: molecular mechanism and therapeutic potential. Biochim Biophys Acta. 2009; 1790(10): 1149–1160. https:// doi.org/10.1016/j.bbagen.2009.....
 
98.
Kataoka H. Chromatographic analysis of Lipoic acid and related compounds. J Chromatogr B Biomed Sci Appl. 1998; 717(1–2): 247–262.
 
99.
Wollin SD, Jones PJH. α-Lipoic acid and cardiovascular disease. J Nutr. 2003; 133(11): 3327–3330. https://doi.org/10.1093/jn/133....
 
100.
Karafakioglu YS. Effects of α lipoic acid on noise induced oxidative stress in rats. Saudi J Biol Sci. 2018; https://doi.org/10.1016/j. sjbs.2018.08.008. https://www.sciencedirect.com/... S1319562X18301840 (dostęp: 17.06.2019).
 
101.
Loy BD, Fling BW, Horak FB, Bourdette DN, Spain RI. Effects of lipoic acid on walking performance, gait, and balance in secondary progressive multiple sclerosis. Complement Ther Med. 2018; 41: 169–174. https://doi.org/10.1016/j.ctim....
 
102.
Huerta AE, Navas-Carretero S, Prieto-Hontoria PL, Martinez JA, Moreno-Aliaga MJ. Effects of α‐lipoic acid and eicosapentaenoic acid in overweight and obese women during weight loss. Obesity (Silver Spring). 2015; 23(2): 313–321. https://doi.org/ 10.1002/oby.20966.
 
103.
Chidlow G, Schmidt KG, Wood JP, Melena J, Osborne NN. Alpha-lipoic acid protects the retina against ischemia-reperfusion. Neuropharmacology. 2002; 43(6): 1015–1025.
 
104.
Skowyra A, Grabska-Liberek I, Stachowska U, Jankowska-Lech I, Tesla P. Rola kwasu a-liponowego i y-linolenowego w jaskrze. Post Nauk Med. 2017; 3: 144–147.
 
105.
Biesalski HK, Nohr D. The nutritional quality diet of meat. W: Kerry JP, Ledward D. Improving the sensory and nutritional quality of fresh meat. 1st edn. Cambridge: Woodhead Publishing Ltd. England; 2009; 161–177.
 
106.
Domaradzki P, Florek M, Staszowska A, Litwińczuk Z. Fulfilment of the requirements of adults and children for minerals by beef, taking into account the breed of cattle and muscle. J Elem. 2017; 22(1): 21–30. https://doi.org/10.5601/jelem.....
 
107.
Wojtasik A, Jarosz M, Stoś K. Składniki mineralne. W: Jarosz M (red.). Normy Żywienia Człowieka. Instytut Żywności i Żywienia. 2017; 203–228.
 
108.
Wyness L, Weichselbaum E, O’Connor A, Williams EB, Benelam B, Riley H, Stanner S. Red meat in the diet: an update. Nutr Bull. 2011; 36(1): 34–77. https://doi.org/10.1111/j.1467....
 
109.
Seong PN, Cho SH, Park KM, Kang GH, Park BY, Moon SS, Ba HV: Characterization of Chicken By-products by Mean of Proximate and Nutritional Compositions. Korean J Food Sci Anim Resour. 2015; 35(2): 179–188. https://doi.org/ 10.5851/kosfa.2015.35.2.179.
 
110.
Ekholm P, Reinivuo H, Matilla P, Pakkala H, Koponen J, Happonen, Hellstrom J, Ovaskainen ML. Changes in mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal. 2007; 20: 487–995. https://doi.org/10.1016/j.jfca....
 
111.
McKenzie-Parnell JM, Guthrie BE. The phytate and mineral content of some cereals, cereal products, legumes, legume products, snack bars, and nuts availablein New Zealand. Biol Trace Elem Res. 1986; 10(2): 107–121. https://doi.org/10.1007/BF0279....
 
112.
Mayer AMB. Historical changes in the mineral content of fruits and vegetables. Br Food J. 1997; 99(6): 207–211. https://doi. org/10.1108/00070709710181540.
 
113.
Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci. 2013; 18(2): 144–157.
 
114.
Al-Yasiry ARM, Kiczorowska B, Samolińska W. Nutritional Value and content of mineral elements in the meat of broiler chickens fed Boswellia serrata supplemented diets. J Elem. 2017; 22(3): 1027–1037. https://doi.org/10.5601/jelem.....
 
115.
Stasiak K, Roślewska A, Stanek M, Cygan-Szczegielniak D, Janicki B. The content of selected minerals determined in the liver, kidney and meat of pigs. J Elem. 2017; 22(4): 1475–1483. https://doi.org/10.5601/ jelem.2017.22.1.1314.
 
116.
Butinaru M, Butu A. Chemical Composition of Vegetables and Their Products. W: Cheung PCK, Mehta BM (red.). Handbook of Food Chemistry. Springer; 2015: 627–692. https://doi.org/10.1007/978-3- 642-36605-5_17.
 
117.
Bilandžić N, Zrnčić S. Determination of copper in food of animal origin and fish in Croatia. Food Control. 2012; 27(2): 284–288. https:// doi.org/10.1016/j.foodcont.201....
 
118.
Nardi EP, Evengelista FS, Tormen L, Saint’Pierre TD, Curtius AJ, de Souza SS. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem. 2009; 112(3): 727–732. https://doi.org/10.1016/j.food....
 
119.
Wen HY, Davis RL, Shi B, Chen JJ, Chen L, Boylan M, Spallholz JE. Bioavailability of Selenium from Veal, Chicken, Beef, Pork, Lamb, Flounder, Tuna, Selenomethionine and Sodium Selenite Assessed in Selenium-Deficient Rats. Biol Trace Elem Res. 1997; 58(1–2): 43–53. https://doi.org/10.1007/BF0291....
 
120.
Kumar BS, Priyadarsini KI. Selenium nutrition: How important is it? Biomed Prev Nutr. 2014; 4(2): 333–341. https://doi.org/10.1016/j. bionut.2014.01.006.
 
121.
Navarro-Alcaron M, Cabrera-Vique C. Selenium in food and the human body: A review. Sci. Total Environ. 2008; 400(1–3): 115–141. https://doi.org/10.1016/j.scit....
 
122.
Parekh PP, Khan AR, Torres MA, Kitto ME. Concentrations of selenium, barium and radium in Brazil nuts. J Food Compos Anal. 2008; 21(4): 332–335. https://doi.org/10.1016/j.jfca....
 
123.
Spitze AR, Wong DL, Rogers QR, Fascetti AJ. Taurine concentrations in animal feed ingredients; cooking influences taurine content. J Anim. Physiol A Anim Nutr. 2003; 87(7–8): 251–262. https://doi. org/10.1046/j.1439-0396.2003.00434.x.
 
124.
Wójcik OP, Koenig KL, Zeleniuch-Jacquote A, Costa M, Chen Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 2009; 208(1): 19–25. https://doi.org/10.1016/j.athe....
 
125.
Kamei M, Fujita T, Kanbe T, Sasaki K, Oshiba K, Otan S, Matsuiyuasa I, Morisawa S. The distribution and content of ubiquinone in foods. Int J Vitam Nutr Res. 1986; 56(1): 57–63.
 
126.
Nriagu J, Boughanen M, Linder A, Howe A, Grant C, Rattray R, Vutchkov M, Lalor G. Levels of As, Cd, Pb, Cu, Se, and Zn in bovine kidneys and livers in Jamaica. Ecotox Environ Safe. 2009; 72(2): 564–571. https://doi.org/10.1016/j.ecoe....
 
127.
Yudicheva O. Study of zinc content in biofortified tomato. Adv Si. 2014; 7: 15–18, https://doi.org/10.15550/ASJ.2....
 
128.
Silva RF, Ascheri JLA, Souza JML. Influence of Brazil nut processing on the quality of nuts. Sci Agro-Technol. 2010; 34(2): 445–450.
 
eISSN:2084-4905
ISSN:2083-4543