PL EN
PRACA PRZEGLĄDOWA
Tkanka tłuszczowa – budowa i funkcje, ze szczególnym uwzględnieniem charakterystyki wybranych adipokin i ich wpływu na organizm
 
Więcej
Ukryj
1
Zakład Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień Wydział Zdrowia Publicznego w Bytomiu, Śląski Uniwersytet Medyczny, Polska
 
2
Oddział Chirurgii Ogólnej i Onkologicznej, Szpital Miejski w Siemianowicach Śląskich, Polska
 
3
Zakład Farmakologii, Instytut Medycyny, Uniwersytet Opolski, Polska
 
 
Autor do korespondencji
Marta Buczkowska   

Zakład Toksykologii i Ochrony Zdrowia w Środowisku Pracy Katedra Toksykologii i Uzależnień Wydział Zdrowia Publicznego w Bytomiu Śląski Uniwersytet Medyczny, Polska
 
 
Med Og Nauk Zdr. 2019;25(3):162-169
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel pracy:
Światowa epidemia otyłości przyczyniła się do rozwoju badań mających na celu dokładne poznanie budowy i zrozumienie procesów zachodzących w tkance tłuszczowej, której nadmiar jest głównym wyznacznikiem tej choroby. Obecnie wiadomo, że tkanka tłuszczowa dzięki wytwarzanym adipokinom może być jedną z przyczyn zaburzeń związanych z otyłością. Celem pracy jest przedstawienie budowy i funkcji tkanki tłuszczowej, ze szczególnym uwzględnieniem jej aktywności hormonalnej.

Skrócony opis stanu wiedzy:
Adipokiny wytwarzane przez tkankę tłuszczową działają nie tylko lokalnie (autokrynnie i parakrynnie), ale także na narządy odległe (działanie endokrynne). Regulują one metabolizm komórkowy, angiogenezę, ciśnienie krwi, procesy immunologiczne i zapalne, utrzymują równowagę energetyczną czy też odpowiadają za uczucie łaknienia i procesy związane z płodnością. Obecnie zidentyfikowano kilkaset adipokin, zróżnicowanych zarówno pod względem budowy, jak i pełnionej funkcji. W pracy opisano wybrane adipokiny o szczególnym znaczeniu dla organizmu.

Podsumowanie:
Tkanka tłuszczowa wpływa na funkcjonowanie całego organizmu i może odgrywać fundamentalną rolę w rozwoju wielu chorób, zwłaszcza metabolicznych. Biorąc pod uwagę szerokie spektrum działania adipokin, należy stwierdzić, że szczególnie ważne staje się dokładne poznanie wpływu tych związków na procesy życiowe, co w przyszłości może umożliwić ich zastosowanie kliniczne w farmakoterapii czy w diagnostyce chorób.


Introduction and Objective:
The world epidemic of obesity has contributed to the development of research aimed at a comprehensive recognition of the structure and understanding of the processes taking place in adipose tissue, the excess of which is the main marker of this disease. At present, it is known that due to the production of adipokines, adipose tissue may be among the causes of obesity-related disorders. The objective of the study is presentation of the structure and function of adipose tissue, with particular consideration of its hormonal activity.

Brief description of the state of knowledge:
Adipokines produced by adipose tissue, not only have a local effect (autocrine and paracrine), but can also target distant organs (endocrine effect). They regulate cellular metabolism, angiogenesis, blood pressure, immunological and inflammatory processes, maintain energy balance or are responsible for appetite and fertility processes. Currently, several hundred adipokines have been identified, diverse with respect to both their structure and function. In the presented review, selected adipokines of special importance for the body are described.

Summary:
Adipose tissue exerts an effect on the functioning of the whole organism, and may play a fundamental role in the development of many diseases, especially those which are metabolic. Considering the broad spectrum of effects of adipokines, it is particularly important to comprehensively recognize the impact of these compounds on the vital processes, which, in the future, may enable their clinical application in the diagnostics and pharmacotherapy of diseases.

 
REFERENCJE (41)
1.
Lou L, Liu M. Adipose tissue in control of metabolism. J Endocrinol 2016; 231(3): 77–99.
 
2.
Lafontan M. Adipose tissue and adipocyte dysregulation. Diabetes Metab 2014; 40: 16–28.
 
3.
Tatoń J, Czech A, Bernas M. Otyłość – zespół metaboliczny. Wydanie I. Warszawa: Wydawnictwo Lekarskie PZWL; 2007.
 
4.
Tang QQ, Lane MD. Adipogenesis: From Stem Cell to Adipocyte. Annu Rev Biochem 2012; 81: 715–736.
 
5.
Moseti D, Regassa A, Kim W-K. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci 2016; 17: 1–24.
 
6.
Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019; 20: 242–258.
 
7.
Saely ChH, Geiger K, Drexel H. Brown versus White Adipose Tissue: A Mini-Review. Gerontology 2012; 58: 15–23.
 
8.
Villarroya F, Cereijo R, Villarroya J et al. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 2017; 13: 26–35.
 
9.
Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci 2015; 36(7): 461–470.
 
10.
Adamczak M, Wiecek A. The adipose tissue as an endocrine organ. Semin Nephrol 2013; 33(1): 2–13.
 
11.
Stern J, Rutkowski J, Scherer P. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 2016; 23(5): 770–784.
 
12.
Leal VO, Mafra D. Adipokines in obesity. Clin Chim Acta 2013; 419: 87–94.
 
13.
Parka H-K, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015; 64(1): 24–34.
 
14.
Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6): 2548–2556.
 
15.
Galica S, Oakhilla JS, Steinberga GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 2010; 316: 129–139.
 
16.
Harwood Jr. HJ. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 2012; 63: 57–75.
 
17.
Paz-Filho G, Mastronardi C, Franco CB et al. Leptin: molecular mechanisms, systemic pro-inflammatory effects, and clinical implications. Arq Bras Endocrinol Metab 2012; 56(9): 597–607.
 
18.
Słomian GJ, Nowak D, Buczkowska M, Głogowska-Gruszka A, Słomian SP, Roczniak W, Janyga S, Nowak P. The role of adiponectin and leptin in the treatment of ovarian cancer patients. Endokrynol Pol 2019; 70(1): 57–63.
 
19.
Gogga P, Karbowska J, Meissner W, Zdzisław K. Rola leptyny w regulacji metabolizmu lipidów i węglowodanów. Postepy Hig Med Dosw 2011; 65: 255–262.
 
20.
Dardeno T, Chou S, Moon HS et al. Leptin in human physiology and therapeutics. Front Neuroendocrinol 2010; 31(3): 377–393.
 
21.
Kieffer TJ, Heller RS, Leech CA et al. Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic β-cells. Diabetes 1997; 46: 1087–1093.
 
22.
Ouchi N, Parker JL, Lugus JJ et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11: 85–97.
 
23.
Dąbrowska M, Szydlarska D, Bar-Andziak E. Adiponektyna a insulinooporność i miażdżyca. Endokrynol Otyłość 2011; 7(3): 186–191.
 
24.
Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol 2016; 8(2): 93–100.
 
25.
Nigro E, Scudiero O, Monaco ML et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int 2014; ID: 658913.
 
26.
Robinson K, Prins J, Venkatesh B. Clinical review: Adiponectin biology and its role in inflammation and critical illness. Crit Care 2011; 15(2): 1–9.
 
27.
Combs TP, Marliss EB. Adiponectin signaling in the liver. Rev Endocr Metab Disord 2014; 15(2): 137–147.
 
28.
Yamauchi T, Iwabu M, Okada-Iwabu M et al. Adiponectin receptors: A review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab 2014; 28: 15–23.
 
29.
Parker-Duffen JL, Nakamura K, Silver M et al. T-cadherin is essential for adiponectin-mediated revascularization. J Biol Chem 2013; 288(34): 24886–24897.
 
30.
Ebrahimi-Mamaeghani M, Mohammadi S, Arefhosseini SR et al. Adiponectin as a potential biomarker of vascular disease. Vasc Health Risk Manag 2015; 11: 55–70.
 
31.
Józefowski Sz. Rola receptorów zmiataczy klasy A, SR-A i MARCO, w układzie odpornościowym. Część 1. Budowa receptorów, repertuar wiązanych ligandów i zdolność do transdukcji sygnału. Postepy Hig Med Dosw 2012; 66: 104–119.
 
32.
Abate N, Sallam HS, Rizzo M et al. Resistin: an inflammatory cytokine. role in cardiovascular diseases, diabetes and the metabolic syndrome. Curr Pharm Des 2014; 20: 496l–4969.
 
33.
Filková M, Haluzík M, Gay S et al. The role of resistin as a regulator of inflammation: Implications for various human pathologies. Clin Immunol 2009; 133: 157–170.
 
34.
Huang X, Yang Z. Resistin’s, obesity and insulin resistance: the continuing disconnect between rodents and humans. J Endocrinol Invest 2016; 39: 607–615.
 
35.
Al-Suhaimi EA, Shehzad A. Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity. Eur J Med Res 2013; 18: 1–13.
 
36.
Słomian G, Świętochowska E, Nowak G, Pawlas K, Żelazko A, Nowak P. Chemotherapy and plasma adipokines level in patients with colorectal cancer. Postepy Hig Med Dosw 2017; 71(0): 281–290.
 
37.
Słomian G, Świętochowska E, Malinowska-Borowska J, Kasperczyk S, Rogalska A, Nowak P. Association between chemotherapy and plasma adipokines in patients with colorectal cancer. Pharmacol Rep. 2014; 66(5): 902–7.
 
38.
Stastny J, Bienertova-Vasku J, Vasku A. Visfatin and its role in obesity development. Diabetes Metab Syndr: Clin Res Rev 2012; 6: 120–124.
 
39.
Grolla AA, Travelli C, Genazzani AA et al. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br J Pharmacol 2016; 173: 2182–2194.
 
40.
Sonoli SS, Shivprasad S, Prasad CVB et al. Visfatin – a review. Eur Rev Med Pharmacol Sci 2011; 15: 9–14.
 
41.
Romacho T, Sánchez-Ferrer CF, Peiró C. Visfatin/Nampt: an adipokine with cardiovascular impact. Mediat inflamm 2013; ID: 946427.
 
eISSN:2084-4905
ISSN:2083-4543
Journals System - logo
Scroll to top