PL EN
PRACA PRZEGLĄDOWA
Czy szczaw powoduje kamicę szczawianową? Przegląd czynników dietetycznych wpływających na ryzyko wystąpienia tej choroby
 
Więcej
Ukryj
1
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego, Wydział Lekarski i Nauk o Zdrowiu, Zakład Biochemii, Polska
 
 
Autor do korespondencji
Małgorzata Kalemba-Drożdż   

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego, Wydział Lekarski i Nauk o Zdrowiu, Zakład Biochemii, Gustawa Herlinga-Grudzińskiego 1, 30-705, Kraków, Polska
 
 
Med Og Nauk Zdr. 2020;26(1):29-34
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie: Kamica szczawianowa jest najczęściej występującym typem kamicy nerkowej, stanowiąc 70-80% przypadków tego schorzenia. Przy określonych warunkach, takich jak: wysokie stężenie kanalikowe kwasu szczawiowego, wysokie stężenie wapnia, uszkodzone nabłonki kanalików, zakażenia układu moczowego i stres oksydacyjny, mogą się wytrącać szczawiany wapnia i inicjować tworzenie kamieni nerkowych. Celem pracy jest przegląd dostępnej literatury naukowej dotyczącej możliwości modyfikowania ryzyka wystąpienia kamicy szczawianowej przez czynniki dietetyczne. Istniejący stan wiedzy: Szczawiany występują w większości pokarmów roślinnych. Przykładem produktów szczególnie zasobnych w kwas szczawiowy są: szczaw, rabarbar, boćwina, soja i kakao. Jednakże zaledwie 10% krążącego w krwioobiegu kwasu szczawiowego pochodzi bezpośrednio z pożywienia, zaś 90% jest produktem metabolizmu wątrobowego, a jego głównym prekursorem jest hydroksyprolina, aminokwas typowy dla kolagenu i elastyny, czyli białek zwierzęcych. Na wzrost ryzyka kamicy szczawianowej ma również wpływ zbyt niska podaż płynów, nadmierna suplementacja witaminami, a także wysoki poziom spożycia cukrów prostych i sodu. Produkty roślinne, choć stanowią źródło kwasu szczawiowego, zawierają również przeciwutleniacze, szczególnie polifenole i witaminy, a także kwas cytrynowy i potas, które redukują ryzyko formowania złogów szczawianu wapnia. Podsumowanie: Zmiana diety na bogatą w warzywa, owoce i zioła oraz redukcja spożycia białek zwierzęcych, głównego źródła hydroksyproliny, powinny stanowić podstawę profilaktyki kamicy szczawianowej

Introduction: Oxalate urolithiasis is the most common type of kidney stones, accounting for 70-80% of cases. Under certain conditions, such as: high oxalic acid concentration, high calcium levels, damaged tubular epithelium, urinary tract infections and oxidative stress, calcium oxalates may precipitate and initiate the formation of kidney stones. The aim of the study is to review the available literature on the possibility of dietary factors to modify the risk of oxalate urolithiasis. State of knowledge: Oxalates are found in most plant foods. Sorrel, rhubarb, chard, soy and cocoa are examples of high-oxalate foods. However, only 10% of oxalic acid which circulates in the bloodstream come directly from food, and 90% is a product of hepatic metabolism, and its main precursor is hydroxyproline, the amino acid typical for animal proteins: collagen and elastin. The increase in the risk of oxalate urolithiasis is also affected by too low fluid intake, excessive vitamin supplementation, as well as high levels of simple sugars and sodium consumption. Although plant products are a source of oxalic acid, they also contain antioxidants, especially polyphenols and vitamins, as well as citric acid and potassium, which reduce the risk of calcium oxalate formation. Conclusions: Changing nutritional habits into the diet rich in vegetables, fruits and herbs, parallel with reducing the consumption of animal proteins, as the main source of hydroxyproline, should form the basis for prophylaxis of oxalate kidney stones.
 
REFERENCJE (49)
1.
Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O, Tiselius HG. Kidney stones. Nat Rev Dis Primers. 2016 Feb; 25; 2: 16008. DOI: 10.1038/nrdp.2016.8.
 
2.
Liu Q, Liu Y, Guan X, Wu J, He Z, Kang J, Tao Z, Deng Y. Effect of M2 Macrophages on injury and apoptosis of renal tubular epithelial cells induced by calcium oxalate crystals. Kidney Blood Press Res. 2019; 44 (4): 777–791. DOI: 10.1159/000501558.
 
3.
Ermer T, Eckardt K, Aronson P, Knauf F. Oxalate, inflammasome, and progression of kidney disease Curr Opin Nephrol Hypertens. 2016 July; 25 (4): 363–371. DOI: 10.1097/MNH.0000000000000229.
 
4.
Ivanovski O, Drüeke TB. A new era in the treatment of calcium oxalate stones? Kidney Int. 2013 Jun; 83 (6): 998–1000. DOI: 10.1038/ki.2013.41.
 
5.
Tavasoli S, Taheri M. Vitamin D and calcium kidney stones: a review and a proposal. Int Urol Nephrol. 2019 Jan; 51 (1): 101–111. DOI: 10.1007/ s11255-018-1965-z.
 
6.
Brzica H, Breljak D, Burckhardt BC, Burckhardt G, Sabolić I. Oxalate: from the environment to kidney stones. Arh Hig Rada Toksikol. 2013 Dec; 64(4): 609–30. DOI: 10.2478/10004-1254-64-2013-2428.
 
7.
Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and function. Annu Rev Plant Biol. 2005; 56: 41–71. DOI: 10.1146/annurev. arplant.56.032604.144106.
 
8.
Dassanayake U, Gnanathasan CA. Acute renal failure following oxalic acid poisoning: a case report. J Occup Med Toxicol. 2012; 7: 17. Published online 2012 Sep 14. DOI: 10.1186/1745-6673-7-17.
 
9.
Glew RH, Sun Y, Horowitz BL, Konstantinov KN, Barry M, Fair JR, Massie L, Tzamaloukas AH. Nephropathy in dietary hyperoxaluria: A potentially preventable acute or chronic kidney disease. World J Nephrol. 2014 Nov 6; 3 (4): 122–42. DOI: 10.5527/wjn.v3.i4.122. Review.
 
10.
Unruh V, Voss GE, Sauerbruch ST, Hesse A. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol. 2004; 15: 1567–1573. Doi: 10.1097/01.asn.0000127864.26968.7f.
 
11.
Liebman M, Al-Wahsh IA. Probiotics and other key determinants of dietary oxalate absorption. Adv Nutr. 2011 May; 2 (3): 254–60. DOI: 10.3945/an.111.000414.
 
12.
Sadaf H, Raza SI, Hassan SW. Role of gut microbiota against calcium oxalate. Microb Pathog. 2017 Aug; 109: 287–291. DOI: 10.1016/j.micpath.2017.06.009.
 
13.
Noonan SC, Savage GP. Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr. 1999 Mar; 8(1): 64–74.
 
14.
Brinkley LJ, Gregory J, Pak CY. A further study of oxalate bioavailability in foods. J Urol. 1990 Jul; 144 (1): 94–6.
 
15.
U.S. Department of Agriculture. Agricultural Research Service. Food Data Central, https: //fdc.nal.usda.gov/fdc-app.html (dostęp: 29.10.2019).
 
16.
Hönow R, & Hesse A. Comparison of extraction methods for the determination of soluble and total oxalate in foods by HPLC-enzyme- -reactor. Food Chemistry. 2002; 78 (4): 511–521. DOI: 10.1016/s0308- 8146(02)00212-1.
 
17.
Attalla K, De S, Monga M. Oxalate content of food: a tangled web. Urology. 2014 Sep; 84 (3): 555–60. DOI: 10.1016/j.urology.2014.03.053.
 
18.
Asplin JR. Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin North Am. 2002; 31: 927–949.
 
19.
Holmes RP, Knight J, Assimos DA. Origin of urinary oxalate. In: Evan AP, Lingeman JE, Williams JCJ, editors. Renal stone disease, Indianapolis. 2006; 900: 176–182.
 
20.
Kotsiris D, Adamou K, Kallidonis P. Diet and stone formation: a brief review of the literature. Curr Opin Urol. 2018 Sep; 28(5): 408–413. DOI: 10.1097/MOU.0000000000000521.
 
21.
Lee JA, Stern JM. Understanding the Link Between Gut Microbiome and Urinary Stone Disease. Curr Urol Rep. 2019 Mar 22; 20(5): 19. DOI: 10.1007/s11934-019-0882-8.
 
22.
Mehta M, Goldfarb DS, Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg. 2016 Dec; 36 (Pt D): 607–612. DOI: 10.1016/j. ijsu.2016.11.024.
 
23.
Ribaya JD, Gershoff SN. Factors affecting endogenous oxalate synthesis and its excretion in feces and urine in rats. J Nutr. 1982 Nov; 112(11): 2161–9. DOI: 10.1093/jn/112.11.2161.
 
24.
Lange JN, Wood KD, Knight J, Assimos DG, Holmes RP. Glyoxal formation and its role in endogenous oxalate synthesis. Adv Urol. 2012: 819202. DOI: 10.1155/2012/819202.
 
25.
Schnedler N, Burckhardt G, Burckhardt BC. “Glyoxylate is a substrate of the sulfate-oxalate exchanger, sat-1, and increases its expression in HepG2 cells”. J Hepatol. 2011, March; 54(3): 513–520. DOI: 10.1016/j. jhep.2010.07.036.
 
26.
Pak CY, Adams-Huet B, Poindexter JR, Pearle MS, Peterson RD, Moe OW. Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 2004; 66: 2032–2037. DOI: https: //doi. org/10.1111/j.1523-1755.2004.00975.x.
 
27.
Nouvenne A, Ticinesi A, Morelli I, Guida L, Borghi L, Meschi T. Fad diets and their effect on urinary stone formation. Transl Androl Urol. 2014 Sep; 3(3): 303–312. DOI: 10.3978/j.issn.2223-4683.2014.06.01.
 
28.
O’Kell AL, Grant DC, Khan SR. Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis. 2017 Aug; 45(4): 329–336. DOI: 10.1007/s00240-017-0978-x.
 
29.
Jarosz M. Normy żywienia dla populacji polskiej, Warszawa: Instytut Żywności i Żywienia; 2017.
 
30.
Ahmed S, Hasan MM, Khan H, Mahmood ZA, Patel S. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation. Biomed Pharmacother. 2018 Oct; 106: 1292–1299. DOI: 10.1016/j.biopha.2018.07.080.
 
31.
Saxena A, Sharma RK. Nutritional aspect of nephrolithiasis. Indian J Urol. 2010 Oct; 26(4): 523–30. DOI: 10.4103/0970-1591.74451.
 
32.
Negri AL, Spivacow FR, Del Valle EE, Forrester M, Rosende G, Pinduli I. Role of overweight and obesity on the urinary excretion of promoters and inhibitors of stone formation in stone formers. Urol Res. 2008 Dec; 36(6): 303–7. DOI: 10.1007/s00240-008-0161-5.
 
33.
Johri N, Cooper B, Robertson W, Choong S et al. An update and practical guide to renal stone management. Nephron Clinical Practice.; 2010; 116 (3): c159–71. DOI: 10.1159/00031719.
 
34.
Taylor EN, Stampfer MJ, Curhan GC: Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow up. I Am Soc Nephrol. 2004; 15: 3225–3232.
 
35.
Knight J, Madduma-Liyanage K, Mobley JA, Assimos DG, Holmes RP. Ascorbic acid intake and oxalate synthesis. Urolithiasis. 2016 Aug; 44 (4): 289–97. DOI: 10.1007/s00240-016-0868-7.
 
36.
Lin WV, Turin CG, McCormick DW, Haas C, Constantine G. Ascorbic acid-induced oxalate nephropathy: a case report and discussion of pathologic mechanisms. CEN Case Rep. 2019 Feb; 8(1): 67–70. DOI: 10.1007/s13730-018-0366-6.
 
37.
Kalemba-Drożdż M. Witamina C w leczeniu nowotworów i profilaktyce chorób niezakaźnych. Państwo i Społeczeństwo. Medycyna i Zdrowie Publiczne; 2018; 3: 91–104. DOI: 10.31749/pismzp2018/20848.
 
38.
Kalemba-Drożdż M. Niedobory folianów w diecie i ich wpływ na stabilność genetyczną. W: Interdyscyplinarne aspekty nauk o zdrowiu; Kraków: Oficyna Wydawnicza AFM; 2011: 21–32.
 
39.
Ferraro PM, Taylor EN, Gambaro G, Curhan GC. Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol. 2013 Aug; 8(8): 1389–95. DOI: 10.2215/CJN.11661112. Epub 2013 May 15.
 
40.
Itoh Y, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K. Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J Urol. 2005; 173: 271–275. DOI: 10.1097/01. ju.0000141311.51003.87.
 
41.
Curhan GC, Willett WC, Knight EL, Stampfer MJ. Dietary factors and the risk of incident kidney stones in younger women. Arch Int Med. 2004; 164: 885–891. DOI: 10.1001/archinte.164.8.885.
 
42.
Santos-Buelga C, González-Paramás AM, Oludemi T, Ayuda-Durán B, González-Manzano S. Plant phenolics as functional food ingredients. Adv Food Nutr Res. 2019; 90: 183–257. DOI: 10.1016/bs.afnr.2019.02.012.
 
43.
Kalemba-Drożdż M, Cierniak A. Antioxidant and genoprotective properties of extracts from edible flowers. J Food Nutr Res. 2019: 58 (1): 42–50, DOI: 10.13140/RG.2.2.17195.49442/1.
 
44.
Kalemba-Drożdż M, Cierniak A, Cichoń I. Berry fruit juices protect lymphocytes against DNA damage and ROS formation induced with heterocyclic aromatic amine PhIP. Journal of Berry Research. 2019 Dec 20; pp. 1–19. DOI: 10.3233/JBR-190429.
 
45.
Ticinesi A, Nouvenne A, Borghi L, Meschi T. Water and other fluids in ,nephrolithiasis: state of the art and future challenges. Crit Rev Food Sci Nutr. 2017; 57: 963–974. DOI: 10.1080/10408398.2014.964355.
 
46.
GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study. Lancet. Open Access Published: April 03, 2019. DOI: 10.1016/S0140-6736(19)30041-8.
 
47.
CBOS. Zachowania żywieniowe Polaków. Komunikat z badań CBOS, Warszawa; 2014; 115. ISSN 2353-5822.
 
48.
Kalemba-Drożdż M. Niedobory dietetyczne u młodzieży akademickiej. W: M. Seń, G. Dębska (red.), Zagrożenia zdrowotne wśród dzieci i młodzieży, Kraków: Oficyna Wydawnicza AFM; 2012: 25–33.
 
49.
Domański H, Karpiński Z, Przybysz D, Straczuk J. Wzory jedzenia a struktura społeczna, Warszawa: Wydawnictwo Naukowe Scholar; 2015. ISBN: 9788373837942.
 
eISSN:2084-4905
ISSN:2083-4543
Journals System - logo
Scroll to top