PRACA POGLĄDOWA
Aktualny stan wiedzy na temat patogenezy, diagnostyki i leczenia przewlekłej choroby nerek
 
Więcej
Ukryj
1
Klinika Nefrologii Dziecięcej, Uniwersytet Medyczny w Lublinie
AUTOR DO KORESPONDENCJI
Maria Małgorzata Zajączkowska
Klinika Nefrologii Dziecięcej, Uniwersytet Medyczny w Lublinie, ul. Chodźki 2, 20-093 Lublin
 
Med Og Nauk Zdr. 2013;19(1):1–7
SŁOWA KLUCZOWE
STRESZCZENIE ARTYKUŁU
Wstęp:
Autorzy przedstawiają w skrócie znane oraz mniej znane i będące nadal przedmiotem zainteresowania badaczy doniesienia na temat bardzo złożonego patomechanizmu przewlekłej choroby nerek (PChN). Szczególną uwagę zwracają na najnowsze badania zmierzające do wczesnego rozpoznania PChN oraz wyjaśnienia, w jaki sposób zahamować postępujący charakter choroby, który wyraża się włóknieniem śródmiąższu i stwardnieniem kłębuszków z upośledzeniem czynności nerek aż do schyłkowej ich niewydolności, a także występowaniem wielu powikłań, w tym sercowo-naczyniowych. Skomplikowane mechanizmy decydujące o progresji zmian tłumaczą dotychczasowy brak skutecznego sposobu leczenia i uzasadniają dalsze próby jego poszukiwania.


Current data on pathogenesis of the initial phase and progression of chronic kidney disease (CKD) are briefly presented. The latest diagnostic procedures, helpful in the early diagnosis of CKD, are also discussed. In addition, the authors provide a short review of treatment modalities for inhibition of the progression of CKD, which is characterized by tubulointerstitial fibrosis and glomerular sclerosis leading to end-stage kidney disease, associated with numerous complications including cardiovascular events. The lack of effective CKD treatment seems to be the result of complex mechanisms underlying the progression of renal fibrosis. There is a need for further studies in this field. Key words : chronic kidney disease, pathogenesis, diagnostics, treatment

 
REFERENCJE (73)
1.
Stompor T (grupa PChN: Rutkowski B, Biedunkiewicz B, Krol E, Małyszko J, Mierzicki P, Nowicki M, Pazik J, Rożański J, Tomczak W, Wanic-Kosowska M, Wnuk R): Białkomocz. Forum Nefrologiczne. 2009; (2)1: 50–59.
 
2.
Abitbol CL, Chandar J, Rodriguez MM, Berho M, Seeherunvong W, Freundlich M, Zilleruelo G. Obesity an preterm birth: additive risk in the progression of kidney disease in children. Pediatr Nephrol. 2009; 24: 1363–1370.
 
3.
Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic Syndrome and Kidney Disease: A Systematic Review and Meta-analysis. Clin J Am Soc Nephrol. 2011; 6:2364–2373.
 
4.
Lim S. Blockade of renin-angiotensin-aldosterone system in kidney and heart disease: how much do we need? Acta Med Indones. 2008; 40(1): 34–37.
 
5.
ESCAPE trial Group, Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Żurowska A, Testa S, Jankauskiene A, Emre S, Caldas-Afonso A, Anarat A, Niaudet P, Mir S Bakkaloglu A, Enke B, Montini G, Wingen AM, Sallay P, Jeck N, Berg U, Caliskan S, Wygoda S, Hohbach-Hohenfellner K, Dusek J, Urasiński T, Arbeiter K, Neuhaus T, Gellemann J, Drożdż D, Fischbach M, Moller K, Wigger M, Peruzzi L, Mehis O, Schaefer F. Strict blood-pressure control and progression of renal failure in chidren. N Engl J Med. 2009; 22, 361 (17): 1701–1703.
 
6.
Tylicki L, Lizakowski S, Rutkowski P, Renke M, Sulikowska B, Heleniak Z, Donderski R, Bednarski R, Przybylska M, Manitius J, Rutkowski B. The Enhanced Renin-Angiotensin-Aldosteron System PharmacologicaBlockade – Which is the Best? Kidney Blood Press Res. 2012; 12;36(1):335–343.
 
7.
Lizakowski S, Tylicki L, Renke M, Rutkowski P, Heleniak Z, Sławińska‑ -Morawska M, Aleksandrowicz E, Lysiak-Szydłowska W, Rutkowski B. Effect of aliskiren on proteinuria in non-diabetic chronic kidney disease: a double-blind, crossover, randomised, controlled trial. Int Urol Nephrol. 2012; 44:1763–1770.
 
8.
Azizi M, Amar L, Menard J. Aldosterone synthase inhibition in humans. Nephrol Dial Transplant. 2012; Oct 8. [Epub ahead of print].
 
9.
Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol. 2009; 24: 1445–1452.
 
10.
Murea M, Register TC, Divers J, Bowden DW, Carr JJ, Hightower CR, Xu J, Smith SC, Hruska KA, Langefeld CD, Freedman BI. Relationships between serum MCP-1 and subclinical kidney disease: African American-Diabetes Heart Study. BMC Nephrol. 2012; 14,13:148.
 
11.
Bani-Hani AH, Leslie JA, Asanuma H, Dinarello CA, Campbell MT, Meldrum DR, Zhang H, Hile K, Meldrum KK. IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney International. 2009; 76: 500–511.
 
12.
Shlipak MG, Scherzer R, Abraham A, Tien PC, Grunfeld C, Peralta CA, Devarajan P, Bennett M, Butch AW, Anastos K, Cohen MH, Nowicki M, harma A, Young MA, Sarnak MJ, Parikh CR. Urinary Markers of Kidney Injury and Kidney Function Decline in HIV-Infected Women. J Acquir Immune Defic Syndr. 2012; 61(5): 565–573.
 
13.
Chromek M, Kjell Tullus, Joachim Lundahl, Annelie Brauner. Tissue Inhibitor of Metalloproteinase 1 Activates Normal Human Granulocytes, Protects Them from Apoptosis, and Blocks Their Transmigration during Inflammation. Infect Immun. 2004; 72(1): 82–88.
 
14.
Chromek M, Tullus K, Hertting O, Jaremko G, Khalil A, Li YH, Brauner A. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases- 1 in acute pyelonephritis and renal scarring. Pediatr Res. 2003; 53(4): 698–705.
 
15.
Musiał K, Makulska I, Zwolińska D. Matrix metalloproteinases and their tissue inhibitors in children and young adults on chronic hemodialysis – preliminary results. Pol Merkur Lek. 2009; 26 (154): 290–293.
 
16.
Okada R, Kawai S, Naito M, Hishida A, Hamajima N, Shinchi K, Chowdhury Turin T, Suzuki S, Mantjoro EM, Toyomura K, Arisawa K, Kuriyama N, Hosono S, Mikami H, Kubo M, Tanaka H, Wakai K. Matrix metalloproteinase-9 gene polymorphisms and chronic kidney disease. Am J Nephrol. 2012; 36(5): 444–450.
 
17.
Tsai JP, Liou JH, Kao WT, Wang SC, Lian JD, Chang HR. Increased expression of intranuclear matrix metalloproteinase 9 in atrophic renal tubules is associated with renal fibrosis. PLoS One. 2012; 7(10): e48164.
 
18.
Altemtam N, Nahas ME, Johnson T. Urinary matrix metalloproteinase activity in diabetic kidney disease: a potential marker of disease progression. Nephron Extra. 2012; 2: 219–232.
 
19.
Mundel P, Reiser J. Proteinuria: an enzymatic disease of the podocyte? Kidney International. 2010; 77, 571–580.
 
20.
Kiliś-Pstrusińska K: Genetyczne czynniki rozwoju I progresji przewlekłej choroby nerek. Postępy Hig Med Dosw. 2010; 64: 50–57.
 
21.
Ku E, Campense VM. Role of aldosterone in the progression of chronic kidney disease and potential use of aldosterone blockade in children. Pediatr Nephrol 2009; 24: 2301–2307.
 
22.
Shroff Rukshana: Monitorning cardiovascular risk factors in children on dialysis. Perit Dial Int. 2009; 29 (S2): S173-S175.
 
23.
Weaver J, Donald J, Kimball TR, Koury PR, Mitsnefes MM. Cardiac output and associated left ventricular hypertrophy in pediatric chronic kidney disease. Pediatr Nephrol. 2009; 24: 565–570.
 
24.
Seiler S, Heine G H, Flisem D. Clinical relevance of FGF-23 in chronic kidney disease. Kidney Int. 2009; 76 (Suppl 114): 534–542.
 
25.
Siomou E, Stefanidis CJ. FGF-23 in children with CKD: a new player in the development of CKD–mineral and bone disorder. Nephrol Dial Transplant. 2012; 27 (12): 4259–4262.
 
26.
Małyszko J: Białko Klotho a przewlekła choroba nerek. Forum Nefrologiczne, 2009; 2(2): 69–73.
 
27.
Than X, He W, and Liu Y. Combination therapy with paricalcitol and trandolapril reduces renal fibrosis in obstructive nephropathy. Kidney Int. 2009; 76: 1284–1257.
 
28.
Li M, Vecihi B: Vitamin D: a new hope for chronic kidney disease? Kidney International. 2009; 76: 1219–1221.
 
29.
Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-O M, Moe OW, Giachelli CM. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012; 82(12): 1261–1270.
 
30.
Mehrotra R, Kermah DA, Salusky IB, Wolf MS, Ravi IT, Yi-Wen C, David M, Sharon GA, Keith CN. Chronic kidney disease, hypovitaminosis D, and mortality in the United States. Kidney Int. 2009; 76: 977- 983.
 
31.
Ruggiero M, Pacini S. Chronic kidney disease and witaminD: how much is adequate? Kidney Int. 2009; 76: 931–933.
 
32.
Ali FN, Arguelles LM, Langman CB, Price HE. Vitamin D deficiency in children with chronic kidney disease: uncovering an epidemic. Pediatrics. 2009; 123 (3): 791–796.
 
33.
Pędzik A, Paradowski M, Rysz J. Stres oksydacyjny w nefrologii. Pol Merk Lek. 2010, XXVIII, 163, 56–60.
 
34.
Kuchta A, Pacanis A, Kortas-Stempak B, Cwiklińska A, Ziętkiewicz M, Renke M, Rutkowski B. Estimation of oxidative stress markers in chronic kidney disease. Kidney Blood Press Res. 2011; 34(1): 12–19.
 
35.
Okamura DM, Himmelfarb J. Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease. Pediatr Nephrol. 2009; 24: 2309–2319.
 
36.
Makulska I. Nowe czynniki ryzyka rozwoju miażdżycy i zaburzenia w układzie sercowo-naczyniowym u dzieci z przewlekłą chorobą nerek. Przydatność autofluorescencji skornej w ich ocenie. Rozprawa habilitacyjna. AM Wrocław 2010.
 
37.
Karbowska A, Boratyńska M, Klinger M. Rezystyna – czynnik patogenetyczny czy biomarker zaburzeń metabolicznych zapalenia? Postępy Hig Med. Dosw. 2009; 63: 485–491.
 
38.
Dhaun N, Lilitkarntakul P, Macintyre IM, Muilwijk E, Johnston NR, Kluth DC, Webb DJ, Goddard J. Urinary endothelin-1 in chronic kidney disease and as a marker of disease activity in lupus nephritis. Am J Physiol Renal Physiol. 2009; 296(6): F1477–1483.
 
39.
Sasser JM, Sullivan JC, Hobbs JL, Yamamoto T, Pollock DM, Carmines PK, Pollock JS. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J Am Soc Nephrol. 2007; 18(1):143–154.
 
40.
Eddy AA, Fogo AB. Plasminogen Activator Inhibitor-1 in Chronic Kidney Disease: Evidence and Mechanisms of Action. J Am Soc Nephrol 2006; 17: 2999–3012.
 
41.
Oksa A. Cardiovascular risk in patients with chronic kidney diseases: a time for new risk markers? Bratisl Lek Listy. 2006; 107(8): 314–319.
 
42.
Chobanyan-Jurgens K, Fuchs AJ, Tsikas D, Kanzelmeyer N, Das AM, Illsinger S, Vaske B, Jordan J, Lucke T. Increased asymmetric dimethylarginine (ADMA) dimethylaminohydrolase (DDAH) activity in childhood hypercholesterolemia type II. Amino Acids. 2012; 43(2): 805–811.
 
43.
Mihout F, Shweke N, Bige N, Jouanneau C, Dussaule JC, Ronco P, Chatziantoniou C, Boffa JJ. Asymmetric dimethylarginine (ADMA) induces chronic kidney disease through a mechanism involving collagen and TGF-β1 synthesis. J Pathol. 2011; 223(1): 37–45.
 
44.
Brooks ER, Langman CB, Wang S, Price HE, Hodges AL, Darling L, Yang AZ, Smith FA. Methylated arginine derivatives in children and adolescents with chronic kidney disease. Pediatr Nephrol. 2009; 24(1): 129–134.
 
45.
Ueda S, Yamagishi S, Matsumoto Y, Fukami K, Okuda S. Asymmetric dimethylarginine (ADMA) is a novel emerging risk factor for cardiovascular disease and the development of renal injury in chronic kidney disease. Clin Exp Nephrol. 2007; 11(2): 115–121.
 
46.
Beige J, Heipmann K, Stumvoll M, Korner A, Kratzsch J. Paradoxical role for adiponectin in chronic renal diseases? An example of reverse epidemiology. Expert Opinion on Therapentic Targets. 2009; 13,2: 163–173.
 
47.
Peti A, Csiky B, Guth E, Kenyeres P, Varga Z, Seres I, Jeney Z, Juhasz M, Mezosi E, Parach G, Kovacs GL, Bajnok L. Associations of Adiponectin with Paraoxonase 1 and sE-selectin In Hemodialyzed Patients. Kidney. Blond Pressure. 2009; 32, 5: 360–365.
 
48.
Wolak T, Kim H, Ren Y, Kim J, Vaziri ND, Nicholas SB. Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney. Kidney Int. 2009; 76: 32–43.
 
49.
El-Abbadi MM, Pai AS, Leaf EM, Yang HY, Bartley BA, Quan KK, Ingalls CM, Liao HW, Giachelli CM. Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin. Kidney Int. 2009; 75(12):1297–1307.
 
50.
Shao JS, Sierra OL, Cohen R, Mecham RP, Kovacs A, Wang J, Distelhorst K, Behrmann A, Halstead LR, Towler DA. Vascular calcification and aortic fibrosis: a bifunctional role for osteopontin in diabetic arteriosclerosis. Arterioscler Thromb Vasc Biol. 2011. 31(8):1821–1833.
 
51.
Kramann R, Brandenburg VM, Schurgers LJ, Ketteler M, Westphal S, Leisten I, Bovi M, Jahnen-Dechent W, Knuchel R, Floege J, Schneider RK. Novel insights into osteogenesis and matrix remodelling associated with calcific uraemic arteriolopathy. Nephrol Dial Transplant. 2012; doi: 10.1093/ndt/gfs466.
 
52.
Civilibal M, Caliskan S, Kurugoglu S, Candan C, Canpolat N, Sever L, Kasapcopur O, Arisoy N. Progression of coronary calcification in pediatric chronic kidney disease stage 5. Pediatr Nephrol. 2009; 24,3: 555–563.
 
53.
Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, Nicocia G, Buemi M. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009; 4(2): 337–344.
 
54.
Wu Y, Su T, Yang L, Zhu SN, Li XM. Urinary neutrophil gelatinase‑ -associated lipocalin: A potential biomarker for predicting rapid progression of drug-induced chronic tubulointerstitial nephritis. Am J Med Sci. 2010; 339(6): 537–542.
 
55.
Viau A, El Karoui K, Laouari D, Burtin M, Nguyen C, Mori K, Pillebout E, Berger T, Mak TW, Knebelmann B, Friedlander G, Barasch J, Terzi F. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest. 2010; 120(11): 4065–4076.
 
56.
Bolignano D, Lacquaniti A, Coppolino G, Donato V, Fazio MR, Nicocia G, Buemi M. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009; 32(2): 91–98.
 
57.
Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand J Clin Lab Invest Suppl. 2008; 241: 89–94.
 
58.
Rubinstein T, Pitashny M, Levine B, Schwartz N, Schwartzman J, Weinstein E, Pego-Reigosa JM, Lu TY, Isenberg D, Rahman A, Putterman C. Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis. Rheumatology (Oxford). 2010; 49(5): 960–971.
 
59.
Suzuki M, Wiers KM, Klein-Gitelman MS, Haines KA, Olson J, Onel KB, O’Neil K, Passo MH, Singer NG, Tucker L, Ying J, Devarajan P, Brunner HI. Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis. Pediatr Nephrol. 2008; 23(3): 403–412.
 
60.
Mitsnefes MM, Kathman TS, Mishra J, Kartal J, Khoury PR, Nickolas TL, Barasch J, Devarajan P. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol. 2007; 22(1): 101–108.
 
61.
Bennett MR, Piyaphanee N, Czech K, Mitsnefes M, Devarajan P. NGAL distinguishes steroid sensitivity in idiopathic nephrotic syndrome. Pediatr Nephrol. 2012; 27(5): 807–812.
 
62.
Ichino M, Kusaka M, Kuroyanagi Y, Mori T, Morooka M, Sasaki H, Shiroki R, Shishido S, Kurahashi H, Hoshinaga K. Urinary neutrophil‑ -gelatinase associated lipocalin is a potential noninvasive marker for renal scarring in patients with vesicoureteral reflux. J Urol. 2010;183(5): 2001–2007.
 
63.
Wasilewska A, Taranta-Janusz K, Dębek W, Zoch-Zwierz W, Kuroczycka- Saniutycz E. KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol. 2011; 26(4): 579–586.
 
64.
Holmquist P, Torffvit O. Tubular function in diabetic children assessed by Tamm-Horsfall protein and glutathione S-transferase. Pediatr Nephrol. 2008; 23(7): 1079–1083.
 
65.
collagen IV and πGST: potential biomarkers for detecting localized kidney injury in diabetes-a pilot study. Am J Nephrol. 2010; 32(3): 219–225. 66. Branten AJ, Mulder TP, Peters WH, Assmann KJ, Wetzels JF. Urinary.
 
66.
excretion of glutathione S transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury. Nephron. 2000; 85(2): 120–126.
 
67.
Xu PC, Zhang JJ, Chen M, Lv JC, Liu G, Zou WZ, Zhang H, Zhao MH. Urinary kidney injury molecule-1 in patients with IgA nephropathy is closely associated with disease severity. Nephrol Dial Transplant. 2011; 26(10): 3229–3236.
 
68.
Nashar K, Fried LF. Hyperuricemia and the progression of chronic kidney disease: is uric acid a marker or an independent risk factor? Adv Chronic Kidney Dis. 2012; 19(6): 386–391.
 
69.
Murea M. Advanced kidney failure and hyperuricemia. Adv Chronic Kidney Dis. 2012; 19(6): 419–424.
 
70.
Dieplinger B, Mueller T, Kollerits B, Struck J, Ritz E, von Eckardstein A, Haltmayer M, Kronenberg F. Pro-A-type natriuretic peptide and proadrenomedullin predict progression of chronic kidney disease: the MMKD Study. Kidney International 2009; 75: 408–414.
 
71.
Meijer E, Bkker S JL., Halbesma N, Jong PE, de Struck J, Gansevoort RT. Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort. Kidney International. 2010; 77, 29–36.
 
72.
Cirillo M. Determinants of kidney dysfunction: is vasopressin a new player in the arena? Kidney International. 2010; 77: 5–6.
 
73.
Perico N, Zoja C, Corna D, Rottoli D, Gaspari F, Haskell L, Remuzzi G. V1/V2 Vasopressin receptor antagonism potentiates the reneprotection of rennin-angiotensin system inhibition in rats with renal mass reduction. Kidney International 2009; 76: 960–967.
 
eISSN:2084-4905
ISSN:2083-4543