6
MNiSW
58.21
ICV
PRACA ORYGINALNA
 
CC BY-NC-ND 3.0
 
 

Białka pstrąga tęczowego jako potencjalne źródło biologicznie aktywnych peptydów

Justyna Borawska 1  ,  
 
1
Katedra Biochemii Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie
MONZ 2015;21(3):322–327
SŁOWA KLUCZOWE:
STRESZCZENIE ARTYKUŁU:
Wstęp:
Wprowadzenie i cel pracy. Bioaktywne peptydy pochodzące z białek żywności mogą pełnić funkcje regulatorów układu sercowo-naczyniowego, nerwowego czy pokarmowego. Do najlepiej znanych bioaktywnych peptydów należą fragmenty białek o właściwościach przeciwnadciśnieniowych, z których większość to inhibitory enzymu konwertującego angiotensynę I (inhibitory ACE). Celem badań było określenie profilu potencjalnej aktywności biologicznej wybranych białek pstrąga tęczowego (Oncorhynchus mykiss) przy użyciu narzędzi bioinformatycznych dostępnych w bazie BIOPEP. Materiał i metody. Sekwencje aminokwasowe 7 białek pochodzących z tkanki mięśniowej pstrąga pobrano z bazy danych UniProt. Dla każdej z wybranych sekwencji wyznaczono częstotliwość występowania biologicznie aktywnych fragmentów (parametr A) oraz potencjalną aktywność biologiczną (parametr B) białek. Następnie przeprowadzono symulowaną proteolizę in silico z wykorzystaniem 6 enzymów proteolitycznych. Wyniki. Największą liczbę sekwencji biopeptydów (1999) zidentyfikowano w kolagenie pstrąga, w tym najwięcej fragmentów o aktywności inhibitora ACE. Białko to charakteryzowało się największą wartością parametrów A (0,7316) i B (0,1651) dla peptydów o aktywności inhibitora ACE ze wszystkich przebadanych sekwencji. Ficyna i papaina uwalniały największą liczbę bioaktywnych fragmentów z badanych białek pstrąga tęczowego. Wnioski. Na podstawie otrzymanych wyników można stwierdzić, że kolagen jest najbogatszym źródłem peptydów bioaktywnych z przebadanych sekwencji aminokwasowych białek pstrąga tęczowego. Ficyna i papaina mogą być wykorzystane do produkcji hydrolizatów lub peptydów o potencjalnej aktywności biologicznej z tkanki mięśniowej pstrąga.


Introduction:
Introduction and objective. Bioactive peptides derived from food proteins are considered as regulators of the cardiovascular, nervous, and digestive systems. Peptides with antihypertensive activity are the best recognized bioactive peptides, of which angiotensin I-converting enzyme inhibitors (ACE inhibitors) are the most known. The aim of presented study was to determine the profile of the potential biological activity of a selected rainbow trout (Oncorhynchus mykiss) protein using bioinformatics tools from the Bioactive Proteins and Peptides database – BIOPEP. Material and methods. Amino acid sequences of 7 proteins originated from trout meat tissue were taken from the UniProt database. The frequency of occurrence of bioactive fragments in protein sequence (parameter A) and potential biological activity of protein (parameter B) were determined for all selected proteins using a procedure built into the BIOPEP database. Then, in silico proteolysis was performed using 6 proteolytic enzymes, which acted separately. Results. It was found that the largest number of bioactive peptides sequences (1,999) was hidden in trout collagen, including the largest number of ACE inhibitors. Collagen was characterized by the highest value of the parameter A (0.7316) and B (0.1651) for fragments with ACE inhibitory activity. Ficin and papain released the largest number of bioactive fragments from the trout proteins tested. Conclusions. Based on these results, it can be concluded that collagen is the richest source of bioactive peptides when compared with the trout proteins studied. Ficin and papain can be used to produce hydrolysates or peptides with potential biological activity from trout meat tissue. key words: trout, bioactive peptides, ACE inhibitors, in silico hydrolysis

AUTOR DO KORESPONDENCJI:
Justyna Borawska   
Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Biochemii Żywności, Plac Cieszyński 1
 
REFERENCJE:
1. Lee JK, Jeon JK, Byun HG. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhyn¬chus keta) skin in spontaneously hypertensive rats. J Funct Foods. 2014; 7: 381–389.
2. Darewicz M, Borawska J, Minkiewicz P, Iwaniak A. Peptydy biologicz¬nie aktywne jako składniki żywności funkcjonalnej. Przem Spoż. 2013; 67: 38–41.
3. Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 2012; 135: 3020–3038.
4. Mohamed S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol. 2014; 35: 114–128.
5. Chen J, Wang Y, Zhong Q, Wu Y, Xia W. Purification and characte¬rization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides 2012; 33: 52–58.
6. Tkaczewska J, Migdał W. Porównanie wydajności rzeźnej, zawartości podstawowych składników odżywczych oraz poziomu metali ciężkich w mięśniach pstrąga tęczowego (Oncorhynchus mykiss) pochodzącego z różnych rejonów Polski. Żywność Nauk Technol Jakość. 2012; 5: 177–186.
7. Lirski A, Szarowski L, Turkowski K, Seremak-Bulge J, Białowąs H, Żelazny J i wsp. Strategia Karp 2020. Wyd. PHU SZOSTAK DRUK; 2013.
8. Gawęcki J, Woźniewicz M. Ryby, przetwory rybne i owoce morza. W: Gawęcki J (red.). Żywienie człowieka. Podstawy nauki o żywieniu. Warszawa: PWN; 2010: 347–348.
9. Łuczyńska J, Tońska E, Borejszo Z. Zawartość makro- i mikroelemen¬tów oraz kwasów tłuszczowych w mięśniach łososia (Salmo salar L.), pstrąga tęczowego (Oncorhynchus mykiss Walb.) i karpia (Cyprinus carpio L.). ŻYWNOŚĆ Nauk Technol Jakość. 2011; 3: 162–172.
10. Carrera M, Cañas B, Gallardo JM. The sarcoplasmic fish proteome: pathways, metabolic networks and potential bioactive peptides for nutritional inferences. J Proteomics. 2013; 78: 211–220.
11. Korhonen H, Pihlanto A. Bioactive peptides: Production and functio¬nality. Int Dairy J. 2006; 16: 945–960.
12. Sánchez-Rivera L, Martínez-Maqueda D, Cruz-Huerta E, Miralles B, Recio I. Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res Int. 2014; 63: 170–181.
13. Bougatef A, Nedjar-Arroume N, Ravallec-Plé R, Leroy Y, Guillochon D, Barkia A i wsp. Angiotensin I-converting enzyme (ACE) inhibitory acti-vities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem. 2008; 111: 350–356.
14. Kim SR, Byun HG. The Novel Angiotensin I Converting Enzyme In¬hibitory Peptide from Rainbow Trout Muscle Hydrolysate. Fish Aquat Sci. 2012; 15: 183–190.
15. Udenigwe CC, Gong M, Wu S. In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochem. 2013; 48: 1794–1799.
16. Udenigwe CC. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci Technol. 2014; 36: 137–143.
17. Dziuba M, Darewicz M. Food Proteins as Precursors of Bioactive Pepti¬des – Classification Into Families. Food Sci Technol Int. 2007; 13: 393–404.
18. Minkiewicz P, Dziuba J, Michalska J. Bovine meat proteins as potential precursors of biologically active peptides – a computational study based on the BIOPEP database. Food Sci Technol Int. 2011; 17: 39–45.
19. Enari H, Takahashi Y, Kawarasaki M, Tada M, Tatsuta K. Identification of angiotensin I-converting enzyme inhibitory peptides derived from salmon muscle and their antihypertensive effect. Fish Sci. 2008; 74: 911–920.
20. Gu RZ, Li CY, Liu WY, Yi WX, Cai MY. Angiotensin I-converting enzy¬me inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Res Int. 2011; 44: 1536–1540.
21. Mendis E, Rajapakse N, Kim SK. Antioxidant properties of a radical¬-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem. 2005; 53: 581–587.
22. Bauchart C, Morzel M, Chambon C, Mirand PP, Reynès C, Buffière C i wsp. Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs. Br J Nutr. 2007; 98: 1187–1195.
23. Cao W, Zhang C, Hong P, Ji H, Hao J. Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats. Int J Food Sci Technol. 2010; 45: 959–965.
24. Vercruysse L, Smagghe G, van der Bent A, van Amerongen A, Onge¬naert M, Van Camp J. Critical evaluation of the use of bioinformatics as a theoretical tool to find high-potential sources of ACE inhibitory peptides. Peptides 2009; 30: 575–582.
25. Informacje na temat enzymów zastosowanych do symulowanej prote¬olizy wybranych białek pstrąga tęczowego z zastosowaniem narzędzi bioinformatycznych bazy danych BIOPEP. www.uwm.edu.pl/bioche¬mia; www.blast.ncbi.nlm.nih.gov (dostęp: 2014. 12.01).
eISSN:2084-4905
ISSN:2083-4543