PRACA POGLĄDOWA
Znaczenie aminokwasów rozgałęzionych w żywieniu człowieka oraz profilaktyce i przebiegu niektórych chorób
 
Więcej
Ukryj
1
Zakład Oceny Żywienia, Wydział Nauk o Żywieniu Człowieka i Konsumpcji, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa
2
Oddział Chorób Wewnętrznych i Kardiologii ze Stacją Dializ, Wojewódzki Szpital Chirurgii Urazowej św. Anny w Warszawie
AUTOR DO KORESPONDENCJI
Małgorzata Ewa Drywień
Zakład Oceny Żywienia, Wydział Nauk o Żywieniu Człowieka i Konsumpcji, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa ul. Nowoursynowska 159 C, 02-776 Warszawa
 
Med Og Nauk Zdr. 2013;19(3):379–384
SŁOWA KLUCZOWE
STRESZCZENIE ARTYKUŁU
Wprowadzenie:
Aminokwasy rozgałęzione (leucyna, izoleucyna, walina) przede wszystkim są składnikami białek, ale regulują także wiele procesów fizjologicznych w organizmie człowieka. Celem pracy było dokonanie analizy obecnego stanu wiedzy na temat znaczenia BCAA dla organizmu człowieka, wykorzystania ich w żywieniu ludzi zdrowych i chorych oraz w profilaktyce wybranych chorób. Zapotrzebowanie dorosłego człowieka na leucynę, walinę i izoleucynę wynosi odpowiednio: 40; 17–25; 19 mg/kg masy ciała. Niedobory w spożyciu aminokwasów rozgałęzionych są rzadkie i dotyczą głównie osób należących do grup spożywających niedostateczne ilości białka w diecie oraz osób cierpiących na choroby nerek i wątroby, u których metabolizm białek został zaburzony. Z dostępnych danych wynika, iż dawki dwu-, a nawet trzykrotnie wyższe od zalecanych są dobrze tolerowane i nie powodują żadnych efektów ubocznych. Odpowiednio wysokie stężenie aminokwasów rozgałęzionych we krwi jest czynnikiem powodującym ograniczony wychwyt tryptofanu, tyrozyny i fenyloalaniny do mózgu. Właściwość ta jest wykorzystywana w leczeniu szeregu schorzeń takich jak: marskość i encefalopatia wątrobowa, fenyloketonuria, zaburzenie afektywne dwubiegunowe, dyskineza późna oraz zespół wyniszczenia nowotworowego. Aminokwasy rozgałęzione, poza budulcową, pełnią też funkcję regulacyjną w zakresie oddziaływania na sekrecję hormonów i katecholamin, powstawanie neurotransmiterów, pobudzanie syntezy białek. Mogą stanowić źródło energii, wpływać na samopoczucie, redukować zmęczenie fizyczne. Stanowią substrat do syntezy innych aminokwasów oraz są ważnym czynnikiem w leczeniu niektórych chorób


Introduction:
Branched chain amino acids (leucine, isoleucine, valine) are mainly constituents of proteins, but also regulate many physiological processes in the human body. The aim of this study was to analyze the current state of knowledge about the importance of BCAA in human beings, their use in the nutrition of the healthy and sick, and in the prevention of some diseases. Adult needs for leucine, valine and isoleucine are, respectively: 40, 17–25, 19 mg / kg body weight. Deficiencies in the intake of BCAA’s are rare and concerns groups consuming inadequate amounts of protein in the diet, and those suffering from kidney and liver diseases in which protein metabolism is disturbed. The available data show that doses of two or even three times higher than those recommended are well tolerated and do not cause any side effects. A sufficiently high concentration of branched chain amino acids in the blood is a factor in the limited uptake of tryptophan, tyrosine and phenylalanine to the brain. This property is used in the treatment of several diseases, such as cirrhosis and hepatic encephalopathy, phenylketonuria, bipolar disorder, tardive dyskinesia and cachexia syndrome. Branched chain amino acids, in addition to their constituent function, also play a regulatory role in the effect on the secretion of hormones and catecholamines, the formation of neurotransmitters, and stimulation of protein synthesis. They can be a source of energy, influence wellbeing, reduce physical fatigue. They are a substrate for the synthesis of other amino acids and are an important factor in the treatment of certain diseases.

 
REFERENCJE (27)
1.
Riazi R, Wykes LJ, Ball RO, Pencharz PB. The total branched-chain amino acid requirement in young healthy adult men determined by indicator amino acid oxidation by use of L-[1–13C]phenylalanine. J Nutr. 2003; 133: 1383–1389.
 
2.
Kurpad AV, Regan MM, Raj TD, Gnanou JV, Rao VN, Young VR. The daily valine requirement of healthy adult Indians determined by the 24-h indicator amino acid balance approach. Am J Clin Nutr. 2005; 82: 373–379.
 
3.
Elango R, Ball RO, Pencharz PB. Amino acid requirements In humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids. 2009; 37: 19–27.
 
4.
Mager DR, Wykes LJ, Ball RO, Pencharz PB. Branched-chain amino acid requirements in school-sged children determined by indicator amino acid oxidation (IAAO). J Nutr. 2003; 133: 3540–3545.
 
5.
WHO Technical Report Series 935. Protein and amino acid requirements in human nutrition.2007. http://www.whqlibdoc.who.int/t... WHO_TRS_935_eng.pdf (dostęp: 11.05.2012).
 
6.
Harris RA, Joshi M, Jeoung NH, Obayashi M. Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J Nutr. 2005; 135: 1527–1530.
 
7.
Marchesini G, Marzocchi R, Noia M, Bianchi G. branched-chain amino acid supplementation in patients with liver diseases. J Nutr. 2005; 135: 1596–1601.
 
8.
De Lorenzo A, Petroni ML, Masala S, Melchiorri G, Pietrantuono M, Periello G i wsp. Effect of acute and chronic branched-chain amino acids on energy metabolism and muscle performance. Diabetes Nutr Metab. 2003; 16: 291–297.
 
9.
Baker DH. Tolerance for branched-chain amino acids in experimental animals and humans. J Nutr. 2005; 135: 1585S–1590S.
 
10.
Fernstrom JD. Branched-chain amino acids and brain function J. Nutr. 2005; 135: 1539S–1546S.
 
11.
Watford M. Lowered concentrations of branched-chain amino acids result in impaired growth and neurological problems: insights from a branched-chain – keto acid dehydrogenase complex kinase-deficient mouse model. Nutr Rev. 2007; 65: 167–172.
 
12.
Charlton M Branched-chain amino acid enriched supplements as therapy for liver disease. J Nutr. 2006; 136: 295–298.
 
13.
Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C i wsp. Nutritional supplementationwith branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003; 124: 1792–1801.
 
14.
Marchesini G, Bianchi G, Rossi B, Brizi M, Melchionda N. Nutritional treatment with branched-chain amino acids in advanced liver cirrhosis. J Gastroenterol. 2000; 35 [Suppl XII]; 7–12.
 
15.
Hayaishi S, Chung H, Kudo M, Ishikawa E, Takita M, Ueda T. i wsp. Oral branched-chain amino acid granules reduce the incidence of hepatocellular carcinoma and improve event-free survival in patients with liver cirrhosis. Dig Dis. 2011; 29: 326–332.
 
16.
Hagiwara A, Nishiyama M, Ishizaki S. Branched-chain amino AIDS prevent insulin-induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2-dependent mechanisms. J Cell Physiol. 2012; 227: 2097–2105.
 
17.
Shirabe K, Yoshimatsu M, Motomura T, Takeishi K, Toshima T, Muto J, i wsp. Beneficial effects of supplementation with branched-chain amino AIDS on postoperative bacterremia In living donor liver trans plant recipients. Liver Transplant. 2011; 17: 1073–1080.
 
18.
Yoshida R, Yagi T, Sadamori H, Matsuda H, Shinoura S, Umeda Y, i wsp. Branched-chain amino acid-enriched nutrients improve nutritional and metabolic abnormalities in the early post-transplant period after living donor liver transplantation. J Hepatobiliary Pancreat Sci. 2011; DOI: 10.1007/s00534–011–0459–5.
 
19.
Makarewicz-Wujec M, Kozłowska-Wojciechowska M. Dieta w fenyloketonurii. 2000. http://www.resmedica.pl/zdart6.... (dostęp: 27.04.2012).
 
20.
Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch Ch, i wsp. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999; 103: 1169–1178.
 
21.
Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM. Reduction of brain dopamine concentration with diet ary tyrosine plus phenylalanine depletion: an [11c]raclopride PET study. Am J Psychiat. 2003; 160: 1887–1889.
 
22.
Gijsman HJ, Scarna A, Harmer CJ, McTavish SB, Odontiadis J, Cowen PJ, i wsp. A dose-finding study on the effects of branch chain amino AIDS on sur rogate markers of brain dopamine function. Psychopharmacology. 2002; 160: 192–197.
 
23.
Richardson MA, Bevans ML, Read LL, Clelland JD, Suckow RF, Maher TJ, i wsp. Efficacy of the branched-chain amino acids in the treatmentof tardive dyskinesia in men. Am J Psychiat. 2003; 160: 1117–1124.
 
24.
Adamek D, Tomik B. Stwardnienie boczne zanikowe. ZOZ Ośrodek UMEA Shinoda-Kuracejo, Wyd. I Krakow, 2005 (http://www.neuro. cm-uj.krakow.pl/download/Porad...).
 
25.
Lizak A, Kałmuk A, Huras B, Prudło I. Zespoł wyniszczenia nowotworowego – etiopatogeneza w świetle aktualnej wiedzy. Wspołcz Onkol. 2003; 7: 441–447.
 
26.
Muscaritoli M, Costelli P, Aversa Z, Bonetto A, Baccino FM, Fanelli FR. New strategies to overcome cancer cachexia: from molecular mechanisms to the “Parallel Pathway”. Asia Pac J Clin Nutr. 2008; 17: 387–390.
 
27.
Laviano A, Muscaritoli M, Cascino A, Preziosa I, Inui A, Mantovani G. i wsp. Branched-chain aminoacids: the best compromise to achieve anabolizm? Curr Opin Clin Nutr Metab Care. 2005; 8: 408–414.
 
eISSN:2084-4905
ISSN:2083-4543