6
MNiSW
58.21
ICV
PRACA ORYGINALNA
 
CC BY-NC-ND 3.0
 
 

Wpływ zmian temperatury otoczenia na wskaźniki stresu oksydacyjnego we krwi osób regularnie poddających się kąpielom zimowym

 
1
Katedra Biologii Medycznej, Collegium Medicum w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
2
Katedra i Zakład Biochemii, Collegium Medicum w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
3
Centralne Laboratorium Badawcze, Olsztyńska Szkoła Wyższa w Olsztynie
MONZ 2016;22(1):46–50
SŁOWA KLUCZOWE:
STRESZCZENIE ARTYKUŁU:
Wprowadzenie:
Uważa się, że kąpiele w zimnej wodzie i sauna pozytywnie wpływają na organizm człowieka, nadal jednak istnieje niewiele dowodów naukowych potwierdzających to zjawisko.

Cel pracy:
Celem pracy było określenie wpływu kąpieli zimowej i sauny na wskaźniki stresu oksydacyjnego we krwi doświadczonych morsów.

Materiał i metody:
Grupę badaną stanowiło 15 zdrowych mężczyzn (ochotników), którzy spędzili 3 minuty w wodzie o temp. +4 °C, po czym udali się na 30 minut do sauny (temp. 80 °C, wilgotność względna 15%). Krew pobrano czterokrotnie: przed wejściem do zimnej wody (kontrola), 5 i 30 min po kąpieli zimowej (przed sauną) oraz 5 min po saunie. Aktywność enzymów antyoksydacyjnych – katalazy (CAT) i dysmutazy ponadtlenkowej (SOD) oznaczono w erytrocytach, peroksydazy glutationowej (GPx) w erytrocytach i osoczu krwi, a ceruloplazminy (Cp) w surowicy. Stężenie produktów peroksydacji lipidów – substancji reagujących z kwasem tiobarbiturowym (TBARS) i sprzężonych dienów (CD) – oznaczono w erytrocytach i w osoczu.

Wyniki:
Wykazano wzrost aktywności GPx w osoczu krwi bezpośrednio po kąpieli zimowej oraz wzrost stężenia CD w osoczu po ekspozycji na zmiany temperatury otoczenia. Stężenie TBARS po kąpieli zimowej uległo obniżeniu zarówno w erytrocytach, jak i w osoczu. Po saunie zaobserwowano wzrost stężenia TBARS w osoczu krwi.

Wnioski:
Wyniki dowodzą stałej gotowości systemu antyoksydacyjnego do obrony przed niekorzystnym działaniem reaktywnych form tlenu podczas ekspozycji na zmiany temperatury otoczenia u doświadczonych morsów, dzięki czemu nie dochodzi do uszkodzeń na poziomie komórkowym. Stosowanie sauny po kąpieli zimowej może być jednak dodatkowym źródłem stresu oksydacyjnego.


Introduction:
Winter swimming and sauna are supposed to beneficially affect the human organism, but there is still a lack of scientific evidence to confirm this phenomena.

Aim:
The aim of the study was to evaluate the effect of cold bath and sauna on markers of oxidative stress in the blood of experienced winter swimmers.

Material and Methods:
The study group consisted of 15 healthy men (volunteers), who spent 3 minutes in water at the temp. of +4 °C, followed by a 30 min sauna session – temp. 80 °C, relative humidity 15%. Blood samples were taken 4 times: before the cold bath (control), 5 and 30 min. after the cold bath (before sauna) and 5 min. after sauna. Activity of antioxidant enzymes – catalase (CAT) and superoxide dismutase (SOD), was determined in erythrocytes, glutathione peroxidase (GPx) in erythrocytes, and blood plasma, and ceruloplasmin (Cp) in serum. The level of lipid peroxidation products – thiobarbituric acid reactive substances (TBARS) and conjugated dienes (CD), were measured in erythrocytes and blood plasma.

Results:
An increase of GPx activity in plasma was observed directly after the cold bath, and also an increase of CD level was revealed after the changes in ambient temperature. The level of TBARS after winter swimming decreased both in erythrocytes and in blood plasma. After the sauna bath, TBARS concentration increased in plasma.

Conclusions:
The results provide evidence of constant alacrity of antioxidant system in prevention against harmful action of reactive oxygen species during exposition to changes in ambient temperature in experienced winter swimmers, which results in lack of damage on the cellular level. However, the use of sauna directly after a cold bath may be an additional source of oxidative stress.

AUTOR DO KORESPONDENCJI:
Celestyna Mila-Kierzenkowska   
Katedra Biologii Medycznej, Collegium Medicum im. L. Rydygiera w Bydgoszczy, UMK w Toruniu, ul. Karłowicza 24, 85-092 Bydgoszcz
 
REFERENCJE:
1. Huttunen P, Kokko L, Ylijukuri V. Winter swimming improves general well – being. Int J Circumpolar Health. 2004; 63: 140–144.
2. Kolettis TM, Kolettis MT. Winter swimming: healthy or hazardous? Evidence and hypothesis. Med Hypotheses. 2003; 61(6): 654–656.
3. Brenke R. Winter-swimming – an extreme form of body hardening. Therapeutikon. 1990; 4: 466–472.
4. Siems WG, Brenke R. Sommerburg O, Grune T. Improved antioxidative protection in winter swimmers. QJMed. 1999; 92: 193–198.
5. Mila-Kierzenkowska C, Woźniak A, Boraczyński T, Szpinda M, Woź¬niak B, Jurecka A, Szpinda A. Thermal stress and oxidant-antioxidant balance in experienced and novice winter swimmers. J Therm Biol. 2012; 37: 595–601.
6. Kukkonen-Harjula K, Kauppinen K. Health effects and risks of sauna bathing. Int J Circumpolar Health. 2006; 65: 195–205.
7. Blagojevic DP. Antioxidant systems in supporting environmental and programmed adaptations to low temperatures. Cryo Letters. 2007; 28(3): 137–150.
8. Bartosz G. Druga twarz tlenu. Warszawa: Wydawnictwo Naukowe PWN; 2009.
9. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological function and human disease. Int J Biochem Cell Biol. 2007; 39: 44–84.
10. Dahlgren C, Karlson A. Respiratory burst in human neutrophils. J Immun Methods. 1999; 232: 3–14.
11. Paradowski M, Pędzik A, Rysz J. Stres oksydacyjny a zjawiska patolo¬giczne ustroju. Diagn Lab. 2008; 44: 363–369.
12. Ravin H. An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med. 1961; 58: 161–168.
13. Sergent O, Morel I, Cogrel P, Chevanne M, Pasdeloup N, Brissot P, Lescoat G, Cillard P. Simultaneous measurements of conjugated dienes and free malondialdehyde, used as a micromethod for the evaluations of lipid peroxidation in rat hepatocyte cultures. Chem Phys Lipids. 1993; 65: 133–139.
14. Aruoma OI. Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radic Res. 1999; 30(6): 419–427.
15. Zapora E, Jarocka I. Hemoglobin – source of reactive oxygen species. Post Hig Med Dośw. 2013; 67: 214–220.
16. Burak Cimen MY. Free radical metabolism in human erythrocytes. Clin Chim Acta. 2008; 390 (1): 1–11.
17. Mila-Kierzenkowska C, Woźniak A, Drewa G, Jurecka A, Rajewski R, Woźniak B, Rakowski A. Whole-body cryostimulation in kayaker women: A study of the effect of cryogenic temperatures on oxidative stress after the exercise. J Sports Med Phys Fitness. 2009; 49(2): 201–207.
18. Woźniak A, Woźniak B, Drewa G, Mila- Kierzenkowska C. The effect of whole- body cryostimulation on the prooxidant- antioxidant balance in blood of elite kayakers after training. Eur J Appl Physiol. 2007; 101: 533–537.
19. Pilch W, Szyguła Z, Pałka T, Cisoń T, Żychowska M. Changes in chosen physiological parameters observed in women during sauna bath after overheating of the body due to excessive temperatures Med Sportiva. 2006; 7(4): 50–53.
20. Masuda A, Miyata M., Kihara T, Minagoe S, Tei C. Repeated sauna therapy reduces urinary 8 – epi – prostaglandyn F2α. Jpn Heart J. 2004; 45: 297–303.
21. Zinchuk V, Zhadzko D. Sauna effect on blood oxygen transport and prooxidant – antioxidant balance in athletes. Med Sportiva. 2012; 8(3): 1883–1889.
22. Uhari M, Pakarinen A., Hietala J, Nurmi T, Kouvalainen K. Serum iron, copper, zinc, ferritin and ceruloplasmin after intense heat exposure. Eur J Appl Physiol Occup Physiol. 1983; 51(3): 331–335.
23. Wierzbicka D, Gromadzka G. Ceruloplazmina, hefajstyna i cyklopen: trzy multimiedziowe oksydazy uczestniczące w metabolizmie żelaza u człowieka. Postępy Hig Med Dośw. 2014; 68: 912–924.
24. Chaudiere J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol. 1999; 37: 949–962.
eISSN:2084-4905
ISSN:2083-4543