Gut-muscle axis. Physical activity as a modulator of gut microbiota status
More details
Hide details
Uniwersytet Jagielloński Collegium Medicum, Wydział Nauk o Zdrowiu, Katedra Nauk Biomedycznych, Polska
Corresponding author
Barbara Macura   

Uniwersytet Jagielloński Collegium Medicum, Wydział Nauk o Zdrowiu, Katedra Nauk Biomedycznych, Ul. Kopernika 7a, 31-034, Kraków, Polska
Med Og Nauk Zdr. 2022;28(4):279-285
Introduction and objective:
It is well-known that many functions of the human body are modulated by gut microbiota. Currently, the biochemical cross-talk between the gut microbiota and muscles is a new field of research. The aim of this study is the presentation of gut microbiotamuscle interactions with particular consideration of the role of physical activity.

Review methods:
The literature search was performed using the PubMed and Google Scholar databases.

Brief description of the state of knowledge:
Available findings of research on animal and human models indicate the presence of two-way relationship between physical activity and the state of gut microbiota. Currently, various mechanisms of biochemical interactions between gut microbiota and muscle tissue are considered. Short chain fatty acids (SCFA) and other bioactive molecules produced by gut microbiota and various myokines e.g. interleukin 6 produced by muscle cells are suspected to be involved in cross-talk between gut microbiota and muscles. The level of these compounds is regulated mainly by diet and physical activity

Gut dysbiosis may contribute to the development of muscle dysfunction and, in turn, muscle dysfunction may facilitate development of gut dysbiosis. Appropriate diet and physical activity, as well as probiotics and prebiotics, may have beneficial prophylactic and therapeutic properties in muscle disorders. The recognition of accurate mechanisms of gut microbiota-muscle interactions is necessary to apply this knowledge in clinical practice.

Ticinesi A, Lauretani F, Tana C, et al. Exercise and immune system as modulators of intestinal microbiome: implications for the gut-muscle axis hypothesis. EIR 2019; 25: 84–95.
Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines. Cells 2022; 11(1): 160. doi: 10.3390/cells11010160.
Codella R, Luzi L, Ileana Terruzzi I. Exercise has the guts: how physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis. 2018; 50(4): 331–341. doi:
Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, White BA, Fryer JD, Woods JA. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol (1985). 2015; 118(8): 1059–1066.
Gizard F, Fernandez A, De Vadder F. Interactions between gut microbiota and skeletal muscle. Nutr Metab Insights. 2020; 13. doi: 10.1177/1178638820980490.
Lahiri S, Kim H, Garcia-Perez I, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019; 11. doi: 10.1126/scitranslmed.aan5662.
O'Sullivan O, Cronin O, Clarke SF, et al. Exercise and the microbiota. Gut Microbes 2015; 6: 131–6. doi: 10.1080/19490976.2015.1011875.
Mohr AE, Jäger R, Carpenter KC, Kerksick CM, et al. The athletic gut microbiota. J Int Soc Sports Nutr. 2020; 17: 24. doi: 10.1186/s12970-020-00353-w.
Dorelli B, Gallè F, De Vito C, et al. Can physical activity influence human gut microbiota composition independently of diet? A systematic review. Nutrients. 2021; 13: 1890. doi: 10.3390/nu13061890.
Gallè F, Valeriani F, Cattaruzza MS, et al. Exploring the association between physical activity and gut microbiota composition: a review of current evidence. Ann Ig. 2019; 31: 582–589. doi: 10.7416/ai.2019.2318.
Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: a review. J Sport Health Sci. 2017; 6: 179–197. doi: 10.1016/j.jshs.2016.05.001.
Aya V, Flórez A, Perez L, et al. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS One 2021; 16: e0247039. doi: 10.1371/journal.pone.0247039.
Divella R, DE Palma G, Tufaro A, et al. Diet, probiotics and physical activity: the right allies for a healthy microbiota. Anticancer Res. 2021; 41: 2759–2772. doi: 10.21873/anticanres.15057.
Bermon S, Petriz B, Kajėnienė A, et al. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015; 21: 70–9.
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020; 113: 2019–2040. doi: 10.1007/s10482-020-01474-7.
Górski J. Podstawy fizjologii wysiłku. In: Górski J, editor. Fizjologia wysiłku i treningu fizycznego. Warszawa: PZWL Wydawnictwo Lekarskie; 2019.
Grosicki GJ, Fielding RA, Lustgarten MS. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcif Tissue Int. 2018; 102: 433–442. doi: 10.1007/s00223-017-0345-5.
Rastelli M, Knauf C, Cani PD. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity (Silver Spring) 2018; 26: 792–800. doi: 10.1002/oby.22175.
Collins KH, Paul HA, Hart DA, et al. A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep. 2016; 6: 37278. doi: 10.1038/srep37278.
Włodarczyk J, Płoska M, Płoski K, et al. Rola krótkołańcuchowych kwasów tłuszczowych w nieswoistych chorobach zapalnych jelit i raku jelita grubego. Postępy Biochem. 2021; 67(3):
Czajkowska A, Szponar B. Krótkołańcuchowe kwasy tłuszczowe (SCFA) jako produkty metabolizmu bakterii jelitowych oraz ich znaczenie dla organizmu gospodarza. Postępy Hig Med. Dośw. 2018; 72: 131–142.
Postler TS, Ghosh S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 2017; 26: 110–130. doi: 10.1016/j.cmet.2017.05.008.
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes. 2016; 7: 189–200. doi: 10.1080/19490976.2015.1134082.
Ticinesi A, Lauretani F, Milani C, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis? Nutrients. 2017; 9: 1303. doi: 10.3390/nu9121303.
Chaumet YS-G, Edeas M. Microbiota–mitochondria inter-talk: consequence for microbiota–host interaction. Patog Dis. 2016; 74. doi: 10.1093/femspd/ftv096.
Robertson MD, Bickerton AS, Dennis AL, et al. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 2005; 82: 559–67, doi: 10.1093/ajcn.82.3.559.
Ziemann E. Jak mięśnie komunikują się z innymi narządami i co z tego wynika? Kosmos. 2020; 69(4), 673–687.
Suriano F, Van Hul M, Cani PD. Gut microbiota and regulation of myokine-adipokine function. Curr Opin Pharmacol 2020; 52: 9–17. doi: 10.1016/j.coph.2020.03.006.
Severinsen MCK, Pedersen BK. Muscle–organ crosstalk: the emerging roles of myokines. Endocr Rev. 2020; 41: 594–609. doi: 10.1210/endrev/bnaa016.
Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, et al. Gut-muscle axis exists and may affect skeletal muscle adaptation to training. Nutrients 2020; 12: 1451. doi: 10.3390/nu12051451.
Bindels LB, Delzenne NM. Muscle wasting: the gut microbiota as a new therapeutic target? Int J Biochem Cell Biol. 2013; 45: 2186–90. doi: 10.1016/j.biocel.2013.06.021.
Journals System - logo
Scroll to top