Anaerobic bacteria as a challenge for modern medical microbiological diagnostics
More details
Hide details
Katedra i Zakład Mikrobiologii Lekarskiej, Warszawski Uniwersytet Medyczny, Polska
Corresponding author
Anna Majewska   

Katedra i Zakład Mikrobiologii Lekarskiej, Warszawski Uniwersytet Medyczny, ul. Chałubińskiego 5, 02-004, Warszawa, Polska
Med Og Nauk Zdr. 2020;26(4):360-365
Introduction and objective:
Anaerobic bacteria are a component of the human microbiome. Many of them are characterized by low pathogenicity, but some may cause opportunistic and polybacterial infections. Some species are absolutely pathogenic. The aim of the study is to show the problems that may appear at any stage of microbiological testing with the participation of anaerobic bacteria.

State of knowledge:
Due to technical difficulties and the cost of the test, microbiological diagnostics of anaerobic bacteria is usually carried out in only a few microbial laboratories. The skipping of diagnoses of these bacteria in routine microbiological testing results in an underestimation of their involvement in the etiology of infections, and makes the monitoring of antibiotic resistance impossible. Among anaerobes strains resistant to clindamycin, beta-lactam antibiotics combined with a beta-lactamase inhibitor and carbapenems, are especially often isolated. The problem of resistance mainly concerns anaerobic Gram-negative rods.

The appropriate procedure, from the stage of sample qualification to the interpretation of the obtained outcome, exerts an effect on the reliability of the result, and significantly reduces the cost associated with the isolation and identification of anaerobic bacteria. Microbiological determination of drug susceptibility of anaerobic bacteria also allows assessment of resistance trends, establishing the principles of empirical therapy, and the creation of appropriate antibiotic policy in the hospital.

Kierzkowska M, Majewska A, Sawicka-Grzelak A, Młunarczyk G. Beztlenowe ziarenkowce Gram-dodatnie (GPAC) – diagnostyka i znaczenie kliniczne. Post Microbiol. 2014; 53: 35–42.
Kierzkowska M, Majewska A, Sawicka-Grzelak A, Młynarczyk G. Pałeczki Gram-ujemne beztlenowo rosnące – diagnostyka i znaczenie kliniczne. Post Microbiol. 2016; 55: 91–98.
Nagy E, Boyanova L, Justesen U. ESCMID Study Group of Anaerobic Infections. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin Microbiol Infect. 2018; 11: 1139–1148.
Shenoy PA, Vishwanath S, Gawda A, Shetty S, Anegundi R, Varma M, et al. Anaerobic bacteria in clinical specimens – frequent, but a neglected lot: A five year experience at a Tertiary Care Hospital. Clin Diagn Res. 2017; 11: 44–48.
Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propioni-bacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016; 66: 4422–4432.
Kierzkowska M, Majewska A, Szymanek-Majchrzak K, Sawicka-Grzelak A, Mlynarczyk A, Mlynarczyk G. In vitro effect of clindamycin against Bacteroides and Parabacteroides isolates in Poland. J Glob Antimicrob Resist. 2018; 13: 49–52.
Kierzkowska M, Majewska A, Sawicka-Grzelak A, Mlynarczyk A, Chmura A, Kwiatkowski A, et al. Antibiotic resistance profiles of strictly anaerobic Gram-negative Bacteroides spp. and Parabacteroides spp. bacilli isolated from infected inpatients on surgical wards. J Glob Antimicrob Resist. 2016; 7: 128–129.
Kierzkowska M, Majewska A, Sawicka-Grzelak A, Mlynarczyk A, Chmura A, Durlik M, et al. Specific character of anaerobic bacterial infections in patients treated in transplantation wards at one of the clinical hospitals in Warsaw. Transplant Proc. 2014; 46: 2586–2588.
Gajdács M, Spengler G, Urbán E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik?s Cube of Clinical Microbiology? Antibiotics (Basel). 2017; 6(4): 25.
Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Chapter 1–2. Anaerobic infections (general): testing anaerobic infections. J Infect Chemother. 2011; 17 (Suppl 1): 13–25.
Miller DL, Brazer S, Murdoch D, Reller LB, Corey GR. Significance of Clostridium tertium bacteremia in neutropenic and nonneutropenic patients: Review of 32 Cases. Clin Infect Dis. 2001; 32: 975–978.
Abusnina W, Shehata M, Karem E, Koc Z, Khalil E. Clostridium sporogenes bacteremia in an immunocompetent patient. IDCases. 2019; 15: e00481.
Horton LE, Mehta SR, Aganovic L, Fierer J. Actinotignum schaalii infection: A clandestine cause of sterile pyuria? Open Forum Infect Dis. 2018; 5: ofy015.
Tavassoli P, Paterson R, Grant J. Actinobaculum schaalii: An emerging uropathogen? Case Rep Urol. 2012; 64: 260–267.
Hall IC. A review of the development and application of physical and chemical principles in the cultivation of obligately anaerobic bacteria. J Bacteriol. 1929; 17: 255–301.
Oktari A, Supriatin Y, Kamal M, Syafrullah H. The bacterial endospore stain on Schaeffer Fulton using variation of methylene blue solution. J Phys. 2017; 812: 012066.
Patrick S, Duerden BI. Gram-negative non-spore forming obligate anaerobes. In: SH Gillespie, P Hawkey (eds). Principles and Practice of Clinical Bacteriology. Second Edition. London: John Wiley & Sons; 2008.
Sondag JE, Ali M, Murray PR. Rapid presumptive identification of anaerobes in blood cultures by gas-liquid chromatography. J Clin Microbiol. 1980; 11: 274–277.
Appelbaum PC, Kaufmann CS, Keifer JC, Venbrux HJ. Comparison of three methods for anaerobe identification. J Clin Microbiol. 1983; 18: 614–621.
Lee EH, Degener JE, Welling GW, Veloo AC. Evaluation of the Vitek 2 ANC card for identification of clinical isolates of anaerobic bacteria. J Clin Microbiol. 2011; 49: 1745–1749.
Rennie RP, Brosnikoff C, Turnbull L, Reller LB, Mirrett S, Janda W, et al. Multicenter evaluation of the Vitek 2 anaerobe and Corynebacterium identification card. J Clin Microbiol. 2008; 46: 2646–2651.
Li Y, Gu B, Liu G, Xia W, Fan K, Mei Y, et al. MALDI-TOF MS versus VITEK 2 ANC card for identification of anaerobic bacteria. J Thorac Dis. 2014; 6: 517–523.
Tsukimoto ER, Rossi F. Evaluation of MALDI-TOF mass spectrometry (VITEK-MS) compared to the ANC card (VITEK 2) for the identification of clinically significant anaerobes. J Bras Patol Med Lab. 2018; 54: 206–212.
Kierzkowska A, Majewska A, Sawicka-Grzelak A, et al. Zastosowanie spektrometrii masowej – MALDI-TOF MS w identyfikacji klinicznych izolatów bakterii beztlenowych = Application of the mass spectrometry – MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. Zakażenia. 2015; 3: 75–78.
Kierzkowska M, Majewska A, Kuthan RT, Sawicka-Grzelak A, Młynarczyk G. A comparison of Api 20A vs MALDI-TOF MS for routine identification of clinically significant anaerobic bacterial strains to the species level. J Microbiol Methods. 2013; 15: 209–212.
Kuthan RT, Chabros Ł, Sawicka-Grzelak A. Zastosowanie spektrometrii masowej MALDI-TOF w rutynowej medycznej diagnostyce bakteriologicznej. Zakażenia. 2013; 1: 87–90.
Czerwicka M, Kumirska J, Stepnowski P. Spektrometria mas – uniwersalna technika analityczna. Laboratorium. 2012; 5–6: 20–22.
Lee W, Kim M, Yong D. Evaluation of VITEK mass spectrometry (MS), a matrix-assisted laser desorption ionization time-of-flight MS system for identification of anaerobic bacteria. Ann Lab Med. 2015; 35(1): 69–75.
Park Y, Choi JY, Yong D, Lee K, Kim JM. Clinical Features and Prognostic Factors of Anaerobic Infections: A 7-Year Retrospective Study. Korean J Intern Med. 2009; 24: 13–18.
European Committee on Antimicrobial Susceptibility Testing (EU-CAST), v. 10, 2020. (dostęp: 31.06.2020).
Kierzkowska M, Majewska A, Mlynarczyk G. Microbial Drug Resistance. Ahead of print.
Journals System - logo
Scroll to top