6
MNiSW
58.21
ICV
PRACA POGLĄDOWA
 
 

Rola hormonu wzrostu, insulinopodobnego czynnika wzrostu typu 1 oraz greliny w rozwoju somatycznym płodu

Emilia Korek 1,  
Jacek Piątek 1  ,  
 
1
Katedra i Zakład Fizjologii, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu
2
Klinika Stomatologii Zachowawczej i Periodontologii Uniwersytetu Medycznego w Poznaniu
MONZ 2016;22(3):216–220
SŁOWA KLUCZOWE:
STRESZCZENIE ARTYKUŁU:
Wprowadzenie i cel pracy:
Rozwój somatyczny organizmu to kompleksowy i dynamiczny proces warunkowany wieloma czynnikami płodowymi, matczynymi, łożyskowymi i środowiskowymi. Kluczowe znaczenie dla zapewnienia prawidłowego wzrostu i różnicowania się komórek, tkanek i narządów mają zarówno sygnały żywieniowe, jak i endokrynne. Zakłócenia w tym zakresie mogą wpływać niekorzystnie nie tylko na wzrost płodu, ale również na zdrowie dzieci w przyszłości. W pracy przedstawiono znaczenie regulatorów endokrynologicznych, w tym hormonu wzrostu, insulinopodobnego czynnika wzrostu typu 1 oraz greliny, w rozwoju płodu.

Skrócony opis stanu:
Centralnym ogniwem układu kontrolującego mechanizm regulacji wzrastania jest przysadka mózgowa wydzielająca hormon wzrostu. W układzie podwzgórze-przysadka mózgowa-tkanki obwodowe produkowane są również inne czynniki wzrostu, m.in. insulinopodobne czynniki wzrostu typu 1 i 2, zwane somatomedynami, które razem z białkami je wiążącymi aktywizują procesy metaboliczne i stymulują wzrastanie płodu. Ponadto, jak wynika z ostatnio prowadzonych badań, kluczową rolę w regulacji wzrastania w okresie płodowym i noworodkowym może odgrywać również grelina.

Podsumowanie:
Przysadkowy hormon wzrostu nie wpływa znacząco na procesy wzrastania płodu. Jednym z ważniejszych czynników zaangażowanych w regulację wzrostu we wczesnym stadium rozwoju zarodkowego płodu jest insulinopodobny czynnik wzrostu typu 1. Istotną rolę w rozwoju płodu spełnia również grelina, która może uczestniczyć w kompensacji wewnątrzmacicznego niedożywienia i promowaniu rozwoju postnatalnego.


Introduction and objective:
Somatic development of an organism is a complex and dynamic process conditioned by many foetal, maternal, placental, and environmental factors. Both nutritional and endocrine signals are of key importance for the provision of normal growth and differentiation of cells, organs, and systems. Disturbances in this respect may exert a negative effect, not only on the growth of the foetus, but also on the health of children in the future. The article presents the importance of endocrine regulators, including the growth hormone, insulin-like growth factor 1, and ghrelin in the development of foetus.

Brief description of the state of knowledge:
The pituitary gland, which secretes growth hormone, is the central link in the system controlling the mechanisms of the regulation of growth. In the hypothalamic-pituitary -peripheral tissues system, other growth factors are also produced, including insulin-like growth factors 1 and 2, called somatomedins, which together with proteins binding them activate metabolic processes and stimulate the growth of the foetus. In addition, studies conducted in recent years show that ghrelin may also play a crucial role in the regulation of growth during the foetal and neonatal periods.

Summary:
Pituitary growth hormone does not significantly affect the processes of foetal development. Insulin-like growth factor 1 is one of the important factors engaged in the regulation of growth at the early stage of embryo and foetal development. Ghrelin, which may participate in the compensation of intrauterine malnutrition and promotion of post-natal development, also plays an important role in the development of the foetus.

AUTOR DO KORESPONDENCJI:
Jacek Piątek   
Katedra i Zakład Fizjologii, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu ul. Święcickiego 6, 60–781 Poznań
 
REFERENCJE (40):
1. Sacks DA. Determinants of fetal growth. Curr Diab Rep. 2004; 4(4): 281–287.
2. Barker DJ. Mothers, Babies and Health in Later Life. 2nd ed. Churchill Livingstone, Edinburgh, 1998.
3. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001; 60: 5–20.
4. Chiesa C, Osborn JF, Haass C, Natale F, Spinelli M, Scapillati E, et al. Ghrelin, leptin, IGF-1, IGFBP-3, and insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry? Clin Chem. 2008; 54(3): 550–558.
5. Barness LA. Obesity in children. Fetal Pediatr Pathol. 2007; 26(2): 75–85.
6. Maziak W, Ward KD, Stockton MB. Childhood obesity: are we missing the big picture? Obesity Rev. 2007; 9(1): 35–42.
7. Bozzola M, Rognone F, Zecca M, Calligaro A. Development of the pituitary and its abnormalities. J Pediatr Endocrinol Metab. 1999; 12 (Suppl 1): 319–327.
8. Drews K. Układ endokrynny płodu. W: Słomko Z (red.). Medycyna perinatalna. Wydawnictwo Lekarskie PZWL, Warszawa; 1994, p. 13.
9. Suganuma N, Seo H, Yamamoto N, Kikkawa F, Oguri H, Narita O, et al. The ontogeny of growth hormone in the human fetal pituitary. Am J Obstet. Gynecol. 1989: 160(3): 729–733.
10. Costa A, Zoppetti G, Benedetto C, Bertino E, Marozio L, Fabris C. et al. Immunolike growth hormone substance in tissues from human embryos/fetuses and adults. J Endocrinol Invest. 1993; 16(8): 625–633.
11. Milner RDG. Prenatal growth control. W: Gluckman PD, Heymann MA, Lagercrantz H, Milner RDG, Whitsett JA, Sagan PD, Thomas Ch, red. Perinatal and pediatric pathophysiology: a clinical perspective. Edward Arnold Publishers, London; 1993, p. 162.
12. Gluckman PD. Growth hormone and prolactin. W: Polin RA, red. Fetal and neonatal physiology. W.W. Fox. Saunders Co, Philadelphia; 1992, p. 1785.
13. Barrios V, Argente J, Pozo J, Hervás F, Muñoz MT, Sánchez JI, et al. Insulin-like growth factor I, insulin-like growth factor binding prote¬ins, and growth hormone binding protein in Spanish premature and full-term newborns. Horm Res. 1996; 46(3): 130–137.
14. Walczak M, Korman E. Hormon wzrostu u wcześniaków oraz niemowląt urodzonych z hipotrofią. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw. 2000; 6(1): 7–13.
15. Swerdlow AJ, Higgins CD, Adlard P, Preece MA. Risk of cancer in patients treated with human pituitary growth hormone in the UK, 1959–85: a cohort study. Lancet 2002; 360(9329): 273–277.
16. Ergun Longmire B, Mertens AC, Mitby P, Qin J, Heller G, Shi W, et al. Growth hormone treatment and risk of second neoplasms in the child¬hood cancer survivor. J Clin Endocrinol Metab. 2006; 91(9): 3494–3498.
17. Pildes RS. Metabolizm węglowodanów. Hipoglikemia noworodków. W: Gadzinowski J, Vidyasagar C (red.). Neonataologia. Ośrodek Wy¬dawnictw Naukowych PAN, Poznań, 2000; p. 491–507.
18. Reece EA, Homko C, Wiznitzer A. Metabolic changes in diabetic and non diabetic subjects Turing pregnancy. Obstet Gynecol Surv. 1994; 49(1): 64–71.
19. Zamłyński J. Rola leptyny, neuropeptydu Y i galaniny w regulacji masy ciała zdrowych kobiet ciężarnych, ciężarnych chorych na cukrzycę typu 1 oraz ich noworodków. Wydawnictwo Śląskiej Akademii Medycznej, Katowice 2002.
20. Ohkawa N, Shoji H, Kitamura T, Suganuma H, Yoshikawa N, Suzuki M, et al. IGF-I, leptin and active ghrelin levels in very low birth weight infants during the first 8 weeks of life. Acta Paediatr. 2010; 99(1): 37–41.
21. Jones JL, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995; 16(1): 3–34.
22. Filus A, Zdrojewicz Z. Insulinopodobny czynnik wzrostu-1 (IGF-1) – budowa i rola w organizmie człowieka. Pediatr Endocrinol Diabetes Metab. 2014; 22(4): 161–169.
23. Boyne MS, Thame M, Bennett FI, Osmond C, Miell JP, Forrester TE. The relationship among circulating insulin-like growth factor (IGF)-I, IGF-binding proteins-1 and -2, and birth anthropometry: a prospective study. J Clin Endocrinol Metab. 2003: 88(4): 1687–1691.
24. Delmis J, Drazancic A, Ivanisevic M, Suchanek E. Glucose, insulin, HGH and IGF-I levels in maternal serum, amniotic fluid and umbili¬cal venous serum: a comparison between late normal pregnancy and pregnancies complicated with diabetes and fetal growth retardation. J Perinat Med. 1992; 20(1): 47–56.
25. Kulik-Rechberger B, Mora-Janiszewska O. Znaczenie ghreliny, hormonu wzrostu i insulinopodobnych czynników wzrostu w rozwoju płodu. Endokrynol Ped. 8/2009; 3(28): 39–44.
26. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004; 4(7): 505–518.
27. Gualillo O, Caminos J, Blanco M, Garcìa-Caballero T, Kojima M, Kanga¬wa K, et al. Ghrelin, a novel placental-derived hormone. Endocrinology. 2001; 142(2): 788–794.
28. Chanoine JP, Yeung LP, Wong AC, Birmingham CL. Immunoreactive ghrelin in human cord blood: relation to anthropometry, leptin, and growth hormone. J Pediatr Gastroenterol Nutr. 2002; 35(3): 282–286.
29. Cortelazzi D, Cappiello V, Morpurgo PS, Ronzoni S, Nobile De Santis MS, Cetin I, et al. Circulating levels of ghrelin in human fetuses. Eur J Endocrinol. 2003; 149(2): 111–116.
30. Budak E, Fernández Sánchez M, Bellver J, Cerveró A, Simón C, Pellicer A. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3–36 with the reproductive system. Fertil Steril. 2006; 85(6): 1563–1581.
31. Polińska B, Matowicka-Karna J, Kemona H. The role of ghrelin in the organism. Post Hig Med Dosw. 2011; 3(65): 1–7.
32. Sanders EJ, Harvey S. Growth hormone as an early embryonic growth and differentiation factor. Anat Embryol (Berl). 2004; 209(1): 1–9.
33. Adrian TE, Lucas A, Bloom SR, Aynsley-Green A. Growth hormone response to feeding in term and preterm neonates. Acta Paediatr Scand. 1983; 72(2): 251–254.
34. Bellone S, Rapa A, Vivenza D, Vercellotti A, Petri A, Radetti G, et al. Circulating ghrelin levels in the newborn are positively associated with gestational age. Clin Endocrinol (Oxf). 2004; 60(5): 613–617.
35. Dytfeld J, Pupek-Musialik D. Ghrelina i jej związek z insulinemią i insulinoopornością u osób otyłych z nadciśnieniem tętniczym. Prz Kardiodiabetol. 2007; 2(1): 27–34.
36. Heppner KM, Tong J, Kirchner H, Nass R, Tschöp MH. The ghrelin O-acyltransferase-ghrelin system: a novel regulator of glucose metabo¬lism. Curr Opin Endocrinol Diabetes Obes. 2011; 18(1): 50–55.
37. Muccioli G, Tschöp M, Papotti M, Deghenghi R, Heiman M, Ghigo E. Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol. 2002; 440(2–3): 235–254.
38. Nakahara K, Nakagawa M, Baba Y, Sato M, Toshinai K, Date Y, et al. Maternal ghrelin plays an important role in rat fetal development during pregnancy. Endocrinology. 2006; 147(3): 1333–1342.
39. Gohlke BC, Huber A, Hecher K, Fimmers R, Bartmann P, Roth CL. Fetal insulinlike growth factor (IGF)-I, IGF-II, and ghrelin in association with birth weight and postnatal growth in monozygotic twins with discordant growth. J Clin Endocrinol Metab. 2005; 90(4): 2270–2274.
40. Fidancı K, Meral C, Süleymanoğlu S, Pirgon Ö, Karademir F, Aydınöz S, et al. Ghrelin levels and postnatal growth in healthy infants 0–3 months of age. J Clin Res Pediatr Endocrinol. 2010; 2(1): 34–8.
eISSN:2084-4905
ISSN:2083-4543