PRACA POGLĄDOWA
Wpływ oksydantów i antyoksydantów na zdrowie jamy ustnej
 
Więcej
Ukryj
1
Doctoral studies at the Faculty of Medicine of the Medical University of Bialystok, Department of Periodontal and Oral Mucosa Diseases UMwB, Białystok, Poland
2
NZOZ Dental Katarzyna Bijowska, Białystok, Poland
3
Independent Laboratory of Gerostomatology, Medical University of Bialystok, Poland
4
Department of Periodontal Diseases and Oral Mucosa, Medical University of Bialystok, Poland
AUTOR DO KORESPONDENCJI
Zofia Natalia Dąbrowska   

Doctoral Studies Medical Faculty of the Medical University of Bialystok, Department of Periodontal and Oral Mucosa Diseases UMwB, Białystok, Poland, ul. Waszyngtona 13, 15-269, Białystok, Poland
 
Med Og Nauk Zdr. 2020;26(2):87–93
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE ARTYKUŁU
Wstęp:
Procesy oksydacyjno-redukcyjne są elementem większości procesów biologicznych. Nadmiar wolnych rodników (WR), w tym aktywnych form tlenu (RFT), prowadzących do powstania stresu oksydacyjnego jest przyczyną powstania wielu chorób o zasięgu ogólnym lub miejscowym, takich jak: cukrzyca, reumatoidalne zapalenie stawów, miażdżyca, chorobym przyzębia i innych elementów narządu żucia. Źródła wolnychmrodników, na które narażona jest jama ustna, to powietrze,mwoda, pokarmy, używki, leki i inne ksenobiotyki. Ciągłe narażenie na WR doprowadziło do wykształcenia się w jamie ustnejmantyoksydacyjnych mechanizmów obronnych. Jednocześniemdostarczenie do środowiska jamy ustnej antyoksydantów, takich jak: witaminy C, E, karotenoidy, flawonoidy, polifenole, zmniejsza stres oksydacyjny w środowisku jamy ustnej.

Cel pracy:
Celem niniejszej pracy jest przedstawienie aktualnego stanu wiedzy dotyczącego wpływu oksydantów i antyoksydantów na środowisko jamy ustnej.

Materiał i metody:
Na podstawie literatury naukowej ostatnich lat dokonano analizy wyników badań na temat procesów oksydacyjno-redukcyjnych w środowisku jamy ustnej. Omówiono czynniki endogenne i egzogenne zarówno oksydacji, jak i antyoksydacji. Wskazano na czynniki etiologiczne procesów chorobowych w przebiegu stresu oksydacyjnego oraz możliwości jego obniżenia dzięki antyoksydantom.

Podsumowanie:
Stres oksydacyjny jako czynnik etiologiczny procesów chorobowych w jamie ustnej może być zrównoważony lub osłabiony w wyniku działania mechanizmów antyoksydacyjnych pochodzenia endogennego (elementy obronne śliny) i egzogennych zawartych w pokarmach i produktach medycznych. Stwarza to możliwości ułożenia programów profilaktycznych chorób jamy ustnej.


Introduction:
Oxidation-reduction processes are an element of the majority of biological processes. An excess of free radicals (FR) and reactive oxygen species (ROS) leading to the development of oxidative stress are the cause of many general and local diseases, such as: diabetes, rheumatiod arthritis, atherosclerosis, periodontal diseases and diseases of other elements of the masticatory organ. The sources of free radical to which the oral cavity is exposed are the air, water, food, stimulants, drugs, and other xenobiotics. Constant exposure to FR has led to the development in the oral cavity of antioxidative defence mechanisms. Simultaneously, the provision to the oral cavity environment of anti-oxidants, such as: vitamins C and E, carotenoids, flavonoids, reduces oxidative stress in the oral cavity environment.

Objective:
The aim of the study is presentation of the current state of knowledge concerning the effect of oxidants and anti-oxidants on the oral cavity environment.

Material and Methods:
Based on scientific literature in the past few years, the results of studies concerning oxidationreduction processes in the oral cavity environment were analyzed, and endogenous and exogenous factors for oxidation, as well as anti-oxidation discussed. Etiologic factors of the pathogenic processes were indicated in the course of oxidative stress, and the possibilities of its reduction due to antioxidants.

Conclusions:
Oxidative stress as an etiologic factor of pathological processes in the oral cavity may be balanced or weakened as a result of the action of antioxidation mechanisms of endogenous origin (salivary protective components), and exogenous contained in food and medicinal products. This creates the possibility for development of prophylactic programmes in oral diseases.

 
REFERENCJE (69)
1.
Tóthová L, Kamodyová N, Cervenka T, Celec P.Salivary markers of oxidative stress in oral diseases. Frontiers in Cellular and Infection Microbiology. 2015; 5: 73. https://doi:10.3389/fcimb.2015....
 
2.
Golusińska-Kardach E, Napierała M, Sokalski J, Kardach H, Florek E. Choroby przyzębia u palaczy tytoniu a parametry stresu oksydacyjnego. Przegląd Lekarski 2015; 72(10): 584–587.
 
3.
Konopka T, Gmyrek-Marciniak A, Kozłowski Z, Kaczmarek U, Wnukiewicz J. Potencjał antyoksydacyjny śliny u pacjentów z zapaleniem przyzębia i rakiem płaskonabłonkowym dna jamy ustnej. Dental and Medical Problems. 2006; 43: 354–362.
 
4.
Iwanek P. Biologiczne podstawy działaniu ozonu na florę jamy ustnej. Roczniki Pomorskiej Akademii Medycznej w Szczecinie 2007; 53(3): 41–44.
 
5.
Roblegg E, Coughran A, Sirjani D. Saliva: an all-rounder of our body. Eur J Pharm Biopharm. 2019; 142: 133–141. https://doi:10.1016/j. ejpb.2019.06.016.
 
6.
Humphrey SP,Williamson RT.A review of saliva: normal composition, flow, and function.J Prosthet Dent.2001; 85(2): 162–169. https:// doi:10.1067/mpr.2001.113778.
 
7.
Gornowicz A, Tokajuk G, Bielawska A. The assesment of sIgA, histatin-g, and lactoperoxidase levels in saliva of adolescents with dental caries. Medical Science Monitor. 2014; 20: 1095–1100. https://doi:10.12659/ MSM.890468.
 
8.
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012; 30: 459–489.
 
9.
Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013; 13: 349–361. https://doi:10.1038/nri3423.
 
10.
Żukowski P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity. Archives of Oral Biology. 2018; 92: 8–17. https://doi: 10.1016/j.archoralbio.2018.04.018.
 
11.
Knaś M, Maciejczyk M, Waszkiel D, Zalewska A. Oxidative stress and salivary antioxidants. Dental and Medical Problems. 2013; 50(4): 461–466.
 
12.
Słotwińska S, Majkowski M. Wybielanie zębów a środowisko jamy ustnej. Nowa Stomatologia 2011; 3: 115–118.
 
13.
Karpińska A, Gromadzka G. Stres oksydacyjny i naturalne mechanizmy antyoksydacyjne – znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych. Postepy Hig Med Dosw (online), 2013; 67: 43–53. https://core.ac.uk/download/ pdf/26834030.pdf (dostęp:2020.03.24).
 
14.
Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 2013; 93(2): 185–198. https://doi: 10.1189/ jlb.0712349.
 
15.
Winterbourn CC. Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid. Toxicology 2002; 181–182: 223–227. https:// doi:10.1016/s0300-483x(02)00286-x.
 
16.
Moore S, Calder KA, Miller NJ, Rice-Evans CA. Antioxidant activity of saliva and periodontal disease. Free Radic Res. 1994; 21(6): 417–425. https://doi:10.3109/1071576940....
 
17.
Gawron-Skarbek A, Prymont-Przymińska A, Sobczak A, et al. A comparison of native and non-urate total antioxidant capacity of fasting plasma and saliva among middle-aged and older subjects. Redox Rep. 2018; 23(1): 57–62. https://doi: 10.1080/13510002.2017.1392714.
 
18.
Munther S. The effects of cigarette smoking and exercise on total salivary antioxidant activity. The Saudi Dental Journal. 2019; 31(1): 31–38. https://doi:10.1016/j.sdentj.2....
 
19.
Łabądź D, Skolarczyk J, Pekar J, Nieradko-Iwanicka B. Analysis of the influence of selected elements on the functioning of the bone tissue. Journal of Education, Health and Sport. 2017; 7(4): 202–209.
 
20.
Nemmiche S, Oxidative Signaling Response to Cadmium Exposure. Toxicological Sciences. 2017; 156(1): 4–10. https://doi:10.1093/toxsci/kfw....
 
21.
Nemmiche S, Guiraud P. Cadmium-induced oxidative damages in the human BJAB cells correlate with changes in intracellular trace elements levels and zinc transporters expression. Toxicology in Vitro. 2016; 37: 169–177. https://doi.org/10.1016/j.tiv.....
 
22.
Pathak N, Khandelwal S. Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium.Toxicology.2006; 220(1): 26–36. https://doi.org/10.1016/j.tox.....
 
23.
Dąbrowski A, Onopiuk B, Car H, Onopiuk P, Dąbrowska Z, Rogalska J, Brzóska MM, Dąbrowska E. Beneficial Impact of an Extract from the Berries of Aronia melanocarpa L. on the Oxidative-Reductive Status of the Submandibular Gland of Rats Exposed to Cadmium. Antioxidants. 2020; 9(2): 185. https://doi.org/10.3390/antiox....
 
24.
Stanfill SB, Connolly GN, Zhang L, Jia LT, Henningfield JE, Richter P, et al. Global surveillance of oral tobacco products: Total nicotine, unionised nicotine and tobacco-specific N-nitrosamines.Tob Control. 2011; 20(3): e2. https://doi:10.1136/tc.2010.03....
 
25.
Akinkugbe AA, Sanders AE, Preisser JS, Cai J, Salazar CR, Beck JD. Environmental tobacco smoke exposure and periodontitis prevalence among nonsmokers in the hispanic community. Health Study/Study of Latinos.Community dentistry and oral epidemiology. 2017; 45(2): 168–177. https://doi: 10.1111/cdoe.12275.
 
26.
Akinkugbe AA, Slade GD, Divaris K, Poole C. Systematic Review and Meta-analysis of the Association Between Exposure to Environmental Tobacco Smoke and Periodontitis Endpoints Among Nonsmokers.Nicotine & tobacco research: official journal of the Society for Research on Nicotine and Tobacco. 2016; 18(11): 2047–2056. https://doi: 10.1093/ntr/ntw105.
 
27.
Dietrich T, Walter C, Oluwagbemigun K, et al. Smoking, Smoking Cessation, and Risk of Tooth Loss: The EPIC-Potsdam Study. J Dent Res. 2015; 94(10): 1369–1375. https://doi:10.1177/0022034515....
 
28.
Brzóska MM, Gałażyn-Sidorczuk M, Jurczuk M, Tomczyk M. Protective effect of Aronia melanocarpa polyphenols on cadmium accumulation in the body: a study in a rat model of human exposure to this metal. Current Drug Targets. 2015; 16(13): 1470–1487. https://doi10.2174/13894501166....
 
29.
Kaczmarek U, Jackowska T, Mielnik-Błaszczak M, Jurczak A, Olczak- Kowalczyk D. Indywidualna profilaktyka fluorkowa u dzieci i młodzieży – rekomendacje polskich ekspertów. Nowa Stomatologia. 2019; 24(2): 70–85. https://doi:10.2512 /NS.2019.24.2.70.
 
30.
O’Mullane DM, Baez RJ, Jones S, Lennon MA, Petersen PE, RuggGunn AJ, Whelton H, Whitford GM. Fluoride and Oral Health. Community Dental Health. 2016; 33(2): 69–99. https://doi:10.1922/CDH_3707O’....
 
31.
Kaczmarek U. Mechanizmy kariostatyczne fluoru. Czas Stomatol .2005; 58(6): 404–413.
 
32.
Lyaruu DM, Medina JF, Sarvide S, Bervoets TJM, Everts V, DenBesten P, et al. Barrier Formation: Potential Molecular Mechanism of Enamel Fluorosis. Journal of Dental Research. 2014; 93(1): 96–102. https://doi.org/10.1177/002203...
 
33.
Sun L, Gao Y, Zhang W, Liu H, Sun D. Effect of high fluoride and high fat on serum lipid levels and oxidative stress in rabbits. Environ Toxicol Pharmacol. 2014; 38(3): 1000–1006. https://doi.org/10.1016/j.etap....
 
34.
Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H, et al. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY). 2017; 9(6): 1623–1639. https://doi:10.18632/aging.101....
 
35.
Kwiatkowska A, Mielczarek A, Gajewski T. Wykorzystanie olejków eterycznych w środkach do higieny jamy ustnej. Nowa Stomatol. 2017; 22(3): 148–155.
 
36.
James P, Worthington HV, Parnell C, et al. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst Rev. 2017; 3: CD008676. https://doi:10.1002/14651858.C....
 
37.
Ou Q, Tan L, Huang X, Luo Q, Wang Y, Lin X. Effect of matrix metalloproteinase 8 inhibitor and chlorhexidine on the cytotoxicity, oxidative stress and cytokine level of MDPC-23. Dental Materials. 2018; 34(11): e301–e308. https://doi.or /10.1016/j.dental.2018.08.295.
 
38.
Proksch S, Strobel SL, Vach K, Abouassi T, Tomakidi P, Ratka-Kruger P, et al. Melatonin as a candidate therapeutic drug for protecting bone cells from chlorhexidine-induced damage. J Periodontol. 2014; 85(12): 379–389. https://doi:10.190 /jop.2014.140279.
 
39.
Fiorillo L. Chlorhexidine gel use in the oral district: a systematic review.Gels. 2019; 5(2): 31. https://doi:10.3390/gels502003....
 
40.
Yıldız M, Alp HH, Gül P, Bakan N, Özcan M. Lipid peroxidation and DNA oxidation caused by dental filling materials. Journal of Dental Sciences. 2017; 12(3): 233–240. https://doi.org/10.1016/j.jds.....
 
41.
Li B, Tan Y, Sun W, Fu Y, Miao L, Cai L. The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy. Toxicol Mech Methods. 2013; 23(1): 27–33. https://doi: 10.3109/15376516.2012.735277.
 
42.
Gapys B, Raszeja-Specht A, Bielarczyk H. Rola cynku w procesach fizjologicznych i patofizjologicznych organizmu. Diagn Lab. 2014; 50(1): 45–52.
 
43.
Maywald M, Rink L. Zinc homeostasis and immunosenescence. J Trace Elem Med Biol. 2015; 29: 24–30. https://doi: 10.1016/j.jtemb.2014.06.003.
 
44.
Oteiza PI. Zinc and the modulation of redox homeostasis. Free Radic Biol Med. 2012; 53(9): 1748–1759. https://doi: 10.1016/j.freeradbiomed.2012.08.568.
 
45.
Korkmaz-Icöz S, Atmanli A, Radovits T, Li S, Hegedüs P, Ruppert M, Brlecic P, Yoshikawa Y, Yasui H, Karck M, Szabó GJ. Administration of zinc complex of acetylsalicylic acid after the onset of myocardial injuryprotects the heart by upregulation of antioxidant enzymes. J Physiol Sci. 2016; 66(2): 113–125. https://doi:10.1007/s12576-015....
 
46.
Kostecka-Sochoń P, Onopiuk BM, Dąbrowska E. Protective Effect of Increased Zinc Supply against Oxidative Damage of Sublingual Gland in Chronic Exposure to Cadmium: Experimental Study on Rats. Oxid Med Cell Longev. 2018; 2018: 3732842. https://doi:10.1155/2018/37328....
 
47.
Yoshino F, Yoshida A. Effects of blue-light irradiation during dental treatment. Japanese Dental Science Review. 2018; 54(4): 160–168. https://doi: 10.1016/j.jdsr.2018.06.002.
 
48.
Mullak A, Hołysz H, Totoń E, Rubiś B. Witamina C jako modulator skuteczności przeciwnowotworowej. Farmacja Współczesna. 2018; 11; 245–253.
 
49.
Xiao-Yan L, Zi-Chuan Z. Assessment of serum malondialdehyde, uric acid, and vitamins C and E levels in patients with recurrent aphthous stomatitis. Journal of Dental Sciences. 2016; 11(4): 401–404. https://doi:10.1016/j.jds.2016....
 
50.
Abdullah HN, Al-Asadi SA, Saleh MA. Effect of Ascorbic Acid (Vitamin C) on H2O2 Induced Oxidative DNA Damage in Human Lymphocytes Estimated by Comet Assay. Diyala Journal For Pure Science. 2018; 14(1): 204–217. https://doi:10.2423 /djps.1401.377C.
 
51.
Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Ozer NK. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med. 2017; 102: 16–36. https://doi:10.1016/j.freeradb....
 
52.
Bo L, Jiang S, Xie Y, Kan H, Song W, Zhao J. Effect of Vitamin E and Omega-3 Fatty Acids on Protecting Ambient PM2.5-Induced Inflammatory Response and Oxidative Stress in Vascular Endothelial Cells.PLoS One. 2016; 11(3): e0152216. https://doi:10.3390/ijms171017....
 
53.
Ji-Youn H, Jung-Seok L, Seong-Ho C, Hyun-Seung S, Jung-Chul P, Seung-Il S, Jong-Hyuk C. A randomized, double-blind, placebo-controlled multicenter study for evaluating the effects of fixed-dose combinations of vitamin C, vitamin E, lysozyme, and carbazochrome on gingival inflammation in chronic periodontitis patients. BMC Oral Health. 2019; 19(40). https://doi.org/10.1186/s12903... . https://bmcoralhealth.biomedce... (dostęp:2020.03.23).
 
54.
Głodo P, Matejko B. Ciemna czekolada jako bogactwo flawonoidów – sprzymierzeńców w prewencji i leczeniu wielu schorzeń. Probl Hig Epidemiol. 2019; 100(2): 82–88.
 
55.
Kałwa K. Właściwości antyoksydacyjne flawonoidów oraz ich wpływ na zdrowie człowieka. Kosmos problemy nauk przyrodniczych. 2019; 68(1): 153–159. https://doi.org/10.36921/kos.2....
 
56.
Huyut Z, Beydemir S , Gülçin I. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds. Biochemistry Research International. 2017; 2017: 7616791. https://doi:10.1155/2017/76167....
 
57.
Nwidu LL, Elmorsy E, Oboma YI, Carter WG. Hepatoprotective and antioxidant activities of Spondias mombin leaf and stem extracts against carbon tetrachloride-induced hepatotoxicity. Journal of Taibah University Medical Sciences. 2018; 13(3): 262–271. https://doi:10.1016/j.jtumed.2....
 
58.
Gómez-García FJ, López-Jornet MP, Álvarez-Sánchez N, Castillo-Sánchez J, Benavente-García O, Vicente Ortega V. Effect of the phenolic compounds apigenin and carnosic acid on oral carcinogenesis in hamster induced by DMBA. Oral Dis. 2013; 19(3): 279–286. https://doi:10.1111/j.1601-082....
 
59.
Borowska S, Brzóska MM. Chokeberries (Aronia melanocarpa) and Their Products as a Possible Means for the Prevention and Treatment of Noncommunicable Diseases and Unfavorable Health Effects Due to Exposure to Xenobiotics. Compr Rev Food Sci Food Saf. 2016; 15(6): 982–1017. https://doi:10.1111/1541-4337.....
 
60.
Fang J. Bioavailability of anthocyanins. Drug Metab Rev. 2014; 46(4): 508–20. https://doi:10.3109/03602532.2...
 
61.
Mężyńska M, Brzóska MM. Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. Journal of Applied Toxicology. 2019; 39(1): 117–145. https://doi:10.1002/jat.3709.
 
62.
Borowska S, Brzóska MM, Tomczyk M. Complexation of bioelements and toxicmetals by polyphenolic compounds-implications for heslth. Current Drug Targets. 2018; 19(14): 612–638. https://doi:10.2174/1389450119....
 
63.
Dąbrowska Z, Dąbrowska E, Onopiuk B, Onopiuk P, Orywal K, Mroczko B, Pietruska M. The Protective Impact of Black Chokeberry Fruit Extract (Aronia melaenocarpa L.) on the Oxidoreductive System of the Parotid Gland of Rats Exposed to Cadmium. Oxidative Medicine and Cellular Longevity. 2019: ID 3403264, 11pp. https://doi.org/10.1155/2019/3....
 
64.
Michalski K, Kulińska-Michalska MM. Ozone in medicine. Medycyna Ogólna i Nauki o Zdrowiu. 2019; 25(3): 135–137. https://doi:https://doi.org/10....
 
65.
Mocny-Pachońska K, Kuśka-Kiełbratowska A, Skaba D, Wójcik M, Janowska-Bogacz K, Tanasiewicz M. Skuteczność zastosowania ozonu w stomatologii – przegląd piśmiennictwa. Ann Acad Med Siles. (online) 2019; 73: 69–73. http://psjd.icm.edu.pl/psjd/el... (dostęp:2020.03.24).
 
66.
Boch T, Tennert C, Vach K, Al-Ahmad A, Hellwig E, Polydorou O. Effect of gaseous ozone on Enterococcus faecalis biofilm–an in vitro study. Clinical Oral Investigations. 2016; 20(7): 1733–1739. https://doi:10.1007/s00784-015....
 
67.
Elvis AM, Ekta JS. Ozone therapy: A clinical review. J Nat Sci Biol Med. 2011; 2(1): 66–70. https://doi:10.4103/0976-9668.....
 
68.
Tusat M, Mentese A, Demir S, Alver A, Imamoglu M. Medical ozone therapy reduces oxidative stress and testicular damage in an experimental model of testicular torsion in rats. Int Braz J Urol. 2017; 43(6):1160–1166. https://doi:10.159 /S1677-5538.IBJU.2016.0546.
 
69.
Zhishun W, Qi H,Yong-lian G,Xiu-heng L, Tao Q. Effect of ozone oxidative preconditioning on inflammation and oxidative stress injury in rat model of renal transplantation .Acta Cir Bras.2018;33(3):238-249 http://www.scielo.b /scielo.php?script=sci_arttext&pid=S0102-86502018000300238.(dostęp:2020.03.25). https://doi.org/10.159 /s0102-865020180030000006.
 
eISSN:2084-4905
ISSN:2083-4543